

User’s Manual – Version 1.1

1

METAMODEL MANAGER

Manual written by:

Becky E. Raboy, Robert C. Lacy, Taylor Callicrate, and Caroline M. Lees

Software written by:

JP Pollak and Robert C. Lacy

Development and distribution of the METAMODEL MANAGER software and this

accompanying manual was supported by the Species Conservation Toolkit Initiative and

a Research Coordination Network grant (DEB-1146198) from the US National Science

Foundation.

Thanks are extended to the many colleagues within the IUCN SSC Conservation

Planning Specialist Group, who helped in the conceptualization and development of the

program. A special thanks to Phil Miller, Philip Nyhus, and Sara Zeigler, in addition to

the developers and authors of this manual, for hours of brainstorming, head-scratching,

and testing of the program.

2

METAMODEL MANAGER is provided at no cost, in order to further conservation and

science. It is distributed without warranty of its suitability for any particular use, and

neither the program nor this manual are guaranteed to be free of errors, bugs or

potentially misleading information. It is the responsibility of the user to ensure that the

software is appropriate for the uses to which it is put.

METAMODEL MANAGER is copyrighted by the Chicago Zoological Society and licensed

under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Distribution of METAMODEL MANAGER is restricted to:

• distribution by the Chicago Zoological Society;

• distribution by the IUCN SSC Conservation Breeding Specialist Group;

• downloading of the program from the internet (https://scti.tools/downloads/) by

individuals, organizations, and governmental agencies for research, teaching, and

conservation applications;

• redistribution without charge of the unmodified executable program for the

purposes described above.

Cover design by: Stephanie Raboy
Bacteria photo credit (upper right photo on cover): photo modified from Flickr contributor

kaibara87 (http://www.flickr.com/photos/kaibara/2234750993/) according to the creative

commons.

Wolf tracks photo credit (lower left photo on cover): NPS Photo – wolf images #16190.

© Chicago Zoological Society 2018

Citation of this manual:

Raboy, B.E., Lacy, R.C., Callicrate, T., & C.M. Lees. 2018. METAMODEL MANAGER.

User’s Manual. Version 1.1. Chicago Zoological Society, Brookfield, Illinois, USA.

Citation of the software:

Pollak, J.P., & R.C. Lacy. 2020. METAMODEL MANAGER. Version 1.0.6. Chicago

Zoological Society, Brookfield, Illinois, USA.

https://creativecommons.org/licenses/by-nd/4.0/
https://scti.tools/downloads/#SoftwareAndManuals
http://www.flickr.com/photos/kaibara/2234750993/

METAMODEL MANAGER Version 1.0 User’s Manual

3

Contents

The Species Conservation Toolkit Initiative (SCTI) ...5

Chapter 1. Introduction ... 6

The history and philosophy of the metamodel approach ...6

What is METAMODEL MANAGER? ...8

When to use METAMODEL MANAGER ... 10

About the manual .. 11

Chapter 2. Quick start guide .. 12

Chapter 3. Case study .. 14

Chapter 4. Installation .. 16

System requirements ... 16

Installation .. 16

Folder and file management ... 17

Processing speed ... 18

Chapter 5. Building a metamodel: what’s involved? .. 19

METAMODEL MANAGER components ... 19

Specifying and managing the interaction between METAMODEL MANAGER components 20

Chapter 6. Data input .. 24

MMM opening screen .. 24

Set System Level and Modifier Programs screen ... 25

DataSet Definition screen ... 26

Order Model Steps screen .. 27

Chapter 7. Running the simulation and viewing output ... 33

Simulation Options screen ... 33

Simulate screen ... 34

Chapter 8. Tutorial .. 36

Chapter 9. Trouble shooting .. 43

Appendix I. Literature cited and other useful references .. 46

Appendix II. Understanding the use of State Variables to model biological links 47

Appendix III. Using VORTEX in METAMODEL MANAGER .. 50

Appendix IV. Using OUTBREAK in METAMODEL MANAGER ... 52

METAMODEL MANAGER Version 1.0 User’s Manual

4

Appendix V. Using EVALUATOR and MMMACRO in metamodels 54
Appendix VI. Using RLink to access an R script as a modifier model ….

Appendix VI. Template for open data exchange via METAMODEL MANAGER 66

METAMODEL MANAGER Version 1.0 User’s Manual

5

The Species Conservation Toolkit Initiative (SCTI)

A partnership to ensure that innovations needed for species risk assessment, evaluating

conservation actions, and managing populations are developed quickly, available

globally, and used effectively.

The past 30 years have seen major advances in the use of computer modeling to address

the growing complexity of species conservation issues. The Species Conservation Toolkit

currently includes the programs VORTEX, OUTBREAK, PMX, and METAMODEL MANAGER,

which collectively have supported conservation decision-making for thousands of

projects around the world.

Under the guidance of expert users, the toolkit allows conservation decision-makers and

practitioners to assess risks to wildlife, evaluate conservation options, and guide active

population management with greater efficiency and realism. It is essential that this toolkit

be maintained and expanded to meet new needs and respond to new opportunities. To this

end, a partnership of organizations has formed to foster lasting support for this suite of

tools, ensuring its continued evolution, global distribution, and ongoing user-support by

technical experts.

Thanks to Chicago Zoological Society, Species360, Smithsonian Conservation Biology

Institute, Association of Zoos and Aquariums, European Association of Zoos and

Aquaria, Wildlife Reserves Singapore, Auckland Zoo, Copenhagen Zoo, Cincinnati Zoo,

Chester Zoo, Zoological Society of London, SOS Rhino, San Diego Zoo Global, Texas

State Aquarium, Oceans Initiative, Raincoast Conservation Foundation, Living

Desert, Saint Louis Zoo, Woodland Park Zoo, and Seattle Aquarium for helping to keep

these conservation tools (and species!) alive and evolving.

Dr. Robert Lacy (Chicago Zoological Society)

Dr. Jonathan Ballou (Smithsonian Conservation Biology Institute)

Dr. Onnie Byers (IUCN SSC Conservation Breeding Specialist Group)

Dr. Taylor Callicrate (Species Conservation Toolkit Initiative)

METAMODEL MANAGER Version 1.0 User’s Manual

6

Chapter 1. Introduction

The history and philosophy of the metamodel approach

The dynamics of wildlife populations are highly complex due to the diversity of

influences and interactions that drive the ecological systems within which they reside.

Relevant factors can include: species life history attributes; inter-species interactions;

dispersal and social behaviors; genetics; human-induced stresses such as novel

pathogens, invasive species, and the collapse of inter-connected communities; and shifts

in the global environment.

Analytical tools for population viability analysis (PVA) (e.g., VORTEX) allow for

consideration of deterministic and stochastic threats. However, these are typically limited

to demographic and environmental stochasticity, genetic decay, and habitat loss. The

inclusion of other factors is often possible, but requires a sometimes highly simplified

characterization of both the relevant interactions and their likely variability of impact.

MEGAMODEL METAMODEL

The value of extending PVA analyses to include a multi-disciplinary and multi-

dimensional treatment of relevant threats is recognized by many. Advocates of this

approach have targeted modeling and process tools as primary vehicles for study.

Specifically, researchers have developed a “metamodeling” approach, through which

Figure 1. Conceptual comparison of a megamodel and a metamodel.

METAMODEL MANAGER Version 1.0 User’s Manual

7

discipline-specific models, each representing a component of an overall system, are

linked (i.e., the outputs of one model become the inputs to another) to reveal emergent

properties of multi-dimensional interactions. In the right circumstances, the approach of

using a suite of inter-linked “sub-models” (a metamodel), can help by:

1) overcoming challenges related to the use of a set of independent models that lack

dynamic interactions and which, therefore, underestimate or ignore important

synergies or cumulative effects.

2) providing an alternative to the difficulty, resources, and model compromises

potentially required in the development of a single, massively complex

“megamodel” (see Figure 1.)

For example, a metamodel that combines a wildlife population sub-model, a habitat

change sub-model, and an epidemiological sub-model of infectious disease can be used to

examine how changes in habitat connectivity can alter dispersal, thereby altering disease

spread and source-sink dynamics within a metapopulation. It would be difficult to assess

the dynamics of a system like this from any single perspective; the population model

would be likely to predict that habitat fragmentation would destabilize the system,

whereas the disease model would predict that fragmentation would protect local

populations from infection. The balance of these trade-offs in even this simple example

would be difficult to predict without a metamodel (see Chapter 3.)

A metamodeling approach requires a central facilitator program to control the sharing of

information between models. METAMODEL MANAGER has been developed to fulfil this

role.

Users are encouraged to read Lacy et al., 2013

(http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0084211) for a more

comprehensive treatment of the features, advantages, and uses of metamodels. Indeed, it

probably is not wise to proceed any further in this manual or with your use of

METAMODEL MANAGER until you have read that background paper!

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0084211

METAMODEL MANAGER Version 1.0 User’s Manual

8

What is METAMODEL MANAGER?

METAMODEL MANAGER is a software interface which controls the way in which a suite of

“sub-models” interact as they simulate the dynamics of a wildlife population in the

context of its many influences (see Figure 2). Each sub-model describes the properties

and dynamics of a specific component of the system of interest. The advantage of this

approach is in enabling the user to harness the unique capabilities of each sub-model

program while exploring the implications of interactions between them, without the need

to construct new and potentially cumbersome “megamodels” (see Figure 1).

Figure 2. Illustration of the role of the facilitator program METAMODEL

MANAGER, in directing the flow of information among sub-models within a multi-

disciplinary metamodel (from Lacy et al., 2013).

METAMODEL MANAGER Version 1.0 User’s Manual

9

In essence, METAMODEL MANAGER acts as the facilitator of a directed conversation

between the sub-model programs:

• it gives each sub-model program a turn to “speak”, that is, it controls the order in

which the various sub-model programs operate within the wider simulation;

• it passes information back and forth between sub-models as “open data” which

can be modified by each before being passed on;

• it determines whether data are private or shared, that is, it can choose to accept or

not accept data modified by particular sub-model programs and can choose to

hide data from or share data with others;

• it functions as a translator, transforming data outputs from one sub-model into the

appropriate input for another;

• it does not analyze or present results; this is left to the sub-model programs.

Each metamodel requires at least one “System Model” (such as VORTEX) to establish a

representation of a wildlife population of interest. To this is added one or more “Modifier

Programs” designed to tweak or otherwise act on the system created (see Figure 2).

Like some of the programs it works with, METAMODEL MANAGER’s function is to serve as

a predictive modeling tool to determine likely population viability outcomes for a given

management scenario, or to compare outcomes across multiple, alternative scenarios. The

program runs iteratively, and its results are generated in the form of means or

probabilities within the sub-model programs. As for other PVA modeling tools, results

can assist the transparent development of conservation goals and can help direct or

prioritize conservation action.

METAMODEL MANAGER can be used for analysis by individuals or in the context of an

inter-disciplinary conservation planning workshop. For examples of its use see Lacy et

al., 2013; Shoemaker et al., 2014; Wells et al., 2015.

CAUTION: Program users and those interpreting results may expect that as

model complexity increases, the overall predictive accuracy should increase.

However, the opposite could also occur, particularly where uncertainty

surrounding the added complexity is high. Sensitivity testing can be used to

indicate which variables are key to population outcomes and therefore, where in the

program accuracy is most important. Sensitivity analyses can be carried out within sub-

models or at higher levels (by adding and subtracting sub-models). Arguably, the success

of the METAMODEL MANAGER program for conservation biology is not in the accuracy of

the results generated per se, but in how well the results are interpreted, keeping in mind

its aforementioned limitations.

METAMODEL MANAGER Version 1.0 User’s Manual

10

When to use METAMODEL MANAGER

In many instances a simple PVA model, properly constructed and interpreted, will

provide sufficient direction for effective conservation action. Adding complexity will not

always be desirable; it may increase inaccuracy and will usually increase time and costs

without necessarily changing the outcome. However, for reasons described above there

will also be instances where increased model complexity will lead to greater insights and,

as a result, better guidance on appropriate intervention.

Metamodels are most likely to be of value where two systems are tightly coupled (e.g. a

predator and its primary or only prey species), or where there are known feedback loops

which could cause an otherwise obscured escalation of vital rates. The following steps

(using VORTEX as the potential System Level Model Program) may be useful in assessing

whether to pursue a metamodel approach:

1) Set up a PVA model for the focal species using the best available information.

2) Sensitivity test thoroughly to identify key parameters affecting demographic

performance. Check sensitivity to both variability and extremes.

3) Where either high variability and/or extremes in these key parameter values are

shown to be influential AND where variability or extreme values are expected to

result from the dynamics of other complex systems for which models could

feasibly be constructed, consider a metamodel approach.

METAMODEL MANAGER Version 1.0 User’s Manual

11

About the manual

The purpose of this manual is to introduce to potential users the principles of the

metamodeling approach and the role of METAMODEL MANAGER, and to provide sufficient

guidance to allow first-time users to build, run, and interpret a simple metamodel. The

manual does not explain how to set up scenarios in the sub-models brought together by

the METAMODEL MANAGER interface. It is assumed that those wishing to use this manual

will already have experience with one or more of the programs for which METAMODEL

MANAGER was developed (e.g., VORTEX or OUTBREAK). Those without this experience

should first consult the software manuals and associated resources for these programs

(available at https://scti.tools/downloads/)

Please send bug reports, suggestions and any requests for additional information to

help@scti.tools. We cannot guarantee that all comments and requests will be answered,

but responses will be provided when possible. We do, however, value all feedback.

https://scti.tools/downloads/

METAMODEL MANAGER Version 1.0 User’s Manual

12

Chapter 2. Quick start guide

It is strongly recommended that you read the complete Manual before attempting to use

METAMODEL MANAGER for the first time. This section is designed to provide a memory

prompt and check-list for those who have some prior experience with METAMODEL

MANAGER and for those who have read the Manual, completed the Tutorial, and are ready

to begin building their own metamodel.

Step 1. Sketch a 2-dimensional representation of your metamodel.

Identify the proposed sub-models, clarify what they will be expected to do, the

information they will need to share, and the sequence through which that information will

be passed from one sub-model to the next (see Box 1).

Step 2. Build and test your sub-models.

See the relevant software manuals for information (e.g. for VORTEX and OUTBREAK go to

https://scti.tools/downloads/). Set up Global, Population, and Individual State Variables

to allow data sharing among components of the metamodel (see Appendix II)

Step 3. Set up your file structure.

Create a new subfolder for your metamodel project within your MMMProjects folder.

Copy all sub-model input files to this location, renaming them for clarity (see Folder and

file management, Chapter 4)

Step 4. Open METAMODEL MANAGER and start a project.

Double-click the METAMODEL MANAGER icon on your desktop. From the opening screen

select Begin a New Project.

Step 5. Select components for inclusion in your metamodel (see Chapter 5):

• Choose a System Level Model program: from the “Setting System Level and

Modifier Programs” screen, underneath the heading “Population/System Models”

and from the column headed “Model”, select a System Model from the list (e.g.

VORTEX or OUTBREAK).

• Choose your System Level Model project: from the column headed “Project

File” click on the “Browse” button and select the relevant scenario from the

appropriate System Level Model project file, which will be in the location you

created for it within the MMMProjects folder.

• Add Modifier or System Level Models: using the buttons running along the

bottom of the screen, add or remove System Level or Modifier Models, clearly

identifying for each the relevant project file and scenario. Continue until all

required programs are included.

• Check shared variables: on the next screen, “DataSet Definition”, check that

shared variables are as you intended before clicking “Next”.

https://scti.tools/downloads/

METAMODEL MANAGER Version 1.0 User’s Manual

13

Step 6. Order Model Steps.

Use this screen to sequence and synchronize sub-model activity.

• Use Up and Down to arrange sub-models in the required sequence of operation.

• Use ± Group to group sub-models that should pass data back-and-forth for a

specified number of cycles before passing it to another sub-model.

• Use ±Break to impose breaks in the simulation process during which the user

may see, change, or save the interim results.

• Use ±Input to import values to override those generated in the modeling process.

• Use ±Output to create a file of all data on the population and its individuals, each

time step.

• Use ±Evaluator to transform state variables describing the system, populations,

or individuals.

Edit the column headed Time Steps to synchronize sub-model program cycles (e.g. by

default OUTBREAK completes 365 cycles during the course of a year; VORTEX completes 1

– this should be reflected in the Time Steps column)

Use the Total Years field to set the number of years over which the simulation will run

(default is 10 years). Use the Iterations field to set the number of times the metamodel

simulation will be repeated. Hit Next to move to the next screen.

Step 7. Simulation options (see Chapter 7).

Choose the variables you would like to see plotted and how you would like them

summarized, or accept the defaults (i.e., population size(s) plotted in “real time”). Click

OK and Save your project before continuing.

Step 8. Simulate.

Click Simulate. Once the simulation is complete, use the buttons at the base of the screen

to Print Graph or to Save Graph and Data.

Step 9. View results.

Detailed results about population dynamics can be accessed by opening the relevant

System Level Model program (e.g., VORTEX) and accessing the relevant program file

saved within the MMMProjects folder.

METAMODEL MANAGER Version 1.0 User’s Manual

14

Chapter 3. Case study

The case study described in this chapter is drawn from Lacy et al., 2013. It illustrates the

ability of a metamodel to reveal ecological dynamics that would be difficult to predict

from individual models. In the hypothetical case presented, an infectious disease is

introduced into a metapopulation consisting of 10 subpopulations with total abundance N

= 250. Annual dispersal rate between subpopulations is varied (0%, 1%, 2%, 4%, and

10%), to explore the effect of metapopulation connectivity on viability in the presence of

infectious disease.

In the metamodel, population viability was predicted within the PVA software VORTEX,

and disease processes were simulated within the epidemiological model OUTBREAK. These

sub-models were linked through METAMODEL MANAGER. Population viability was

simulated under three model structures:

A. Without disease. In this scenario the metapopulation was simulated in VORTEX

alone and included the full range of stochastic elements provided for in the

program: inbreeding depression; individual variation in female breeding rates;

annual environmental variation in mortality rates; random variation in sex-ratio;

and demographic stochasticity (variation due to binomial sampling from constant

reproductive and survival rates).

B. Disease driven. In this scenario, disease processes were included using

OUTBREAK as a modifier model, and their effects emphasized by reducing the

stochastic elements in VORTEX to only variation in sex-ratio and demographic

stochasticity (which cannot be disabled).

C. Disease plus all stochastic factors. In this disease-inclusive metamodel, all

VORTEX stochastic elements were included.

The results of these trials are illustrated in Figure 3.

Figure 3. Comparison of three model structures: A. Without disease; B. Disease-

driven; C. Disease plus all stochastic factors; from Lacy et al., 2013

METAMODEL MANAGER Version 1.0 User’s Manual

15

In (A), higher rates of dispersal increase growth and stability of the metapopulation

because stochastic effects in local subpopulations are dampened. When disease is

introduced but stochasticity dampened, as in (B), higher rates of dispersal depress

population size because of the faster spread of disease. Finally, when stochasticity,

disease and dispersal are considered in (C), higher dispersal initially reduces population

size because of the faster spread of disease. In later years, disease is largely eliminated

from the system, and higher rates of dispersal stabilize the population against stochastic

fluctuations. During a few years in the middle of the simulation, disease and stochastic

processes are equally important, and intermediate rates of dispersal lead to the highest

population size.

Differences in the impacts of population connectivity on metapopulation dynamics in the

absence (A) or presence (B, C) of disease illustrates the opposing forces acting on sub-

divided populations: stochastic processes threaten small, isolated populations and are

countered by dispersal while infectious disease transmission threatens inter-connected

populations and is blocked by isolation. Both processes impact many real populations,

but the balance between these forces would be difficult to predict from the application of

standard PVA methods for population modeling, from standard epidemiological models

of disease, or even from the examination of both models independently, as illustrated

above.

Overall, the balance between positive and negative effects of population fragmentation

was dependent on the temporal scale over which metapopulation dynamics were

projected as well as the specific population and disease parameters applied in the

metamodel. Changes to these could change metamodel predictions regarding the optimal

range of dispersal rates. Metamodels will perhaps be most useful for investigations of the

compound threats facing specific populations in specific circumstances precisely because

outcomes are determined by complex interactions that are sometimes synergistic and

sometimes countervailing.

For further details of this study users are directed to Lacy et al., 2013. The VORTEX input

file that includes all demographic rates, the OUTBREAK disease specification file, and the

METAMODEL MANAGER control files used in this example are placed into a Samples

subfolder during installation of METAMODEL MANAGER.

METAMODEL MANAGER Version 1.0 User’s Manual

16

Chapter 4. Installation

System requirements

METAMODEL MANAGER is compiled to run on any version of the MS Windows (Microsoft

Corp. Redmond, Washington, USA) operating system (although compatibility with all

current and future versions of Windows is not guaranteed).

METAMODEL MANAGER does not itself require much computer memory or processor speed

to run. It can run on either a 32-bit or 64-bit processor. However, often the models linked

through it will work best (or only) if the computer has ample RAM and a fast processor.

(We suggest a minimum of 4 GB of RAM and an i5 or newer processor. You may need

more RAM depending on the complexity of your model).

METAMODEL MANAGER is copyrighted, so you cannot legally re-use or adapt the program

code within your own software projects. However, the source code is freely available for

examination, so that programmers of models to be linked via METAMODEL MANAGER can

see exactly how it accesses linked models and shares data among them. The code is

placed into a SourceCode subfolder of the program folder where METAMODEL MANAGER

is installed. However, little attempt has been made to make the source code easily

readable by others (the emphasis in coding was instead on creating a powerful and highly

flexible program), and some third-party software tools would be required to recompile

METAMODEL MANAGER. The program was written in the C# language, compiled with MS

Visual Studio (Microsoft Corp. Redmond, Washington, USA), and uses some user

interface controls from ComponentOne Studio WinForms (Grape City Inc., Pittsburgh,

Pennsylvania, USA).

Installation

METAMODEL MANAGER is available for free download online at

https://scti.tools/downloads/. The installation (MMMInstallation.msi) automatically

configures necessary folders, includes the program libraries necessary to run VORTEX and

OUTBREAK models within METAMODEL MANAGER, and includes the SPATIAL and

PATHHISTORY programs.

The installation automatically creates a program short-cut on your desktop.

It is also highly recommended that you download and install the latest versions of the full

VORTEX and OUTBREAK programs (also available at https://scti.tools/downloads/). These

programs will be needed in order to create VORTEX and OUTBREAK projects for running

within a metamodel.

https://scti.tools/downloads/
https://scti.tools/downloads/

METAMODEL MANAGER Version 1.0 User’s Manual

17

CAUTION: METAMODEL MANAGER keeps its own copies of the VORTEX and

OUTBREAK program files and so will use whichever versions were available

when it was compiled. Therefore, when installing a newer version of VORTEX or

OUTBREAK for use in a metamodel, reinstall METAMODEL MANAGER at the same

time, so that it will use the most recent versions of these programs.

Folder and file management

METAMODEL MANAGER facilitates interactions between sub-models built in different

programs. In addition to the files generated by these programs under the direction of

METAMODEL MANAGER, each of these programs (e.g. VORTEX, OUTBREAK) is capable of

generating and storing its own output when run outside the context of a metamodel. A

large number of files will be created during the building, testing, running, and refining of

both the sub-models and the meta-model. Disciplined management and storage of these

files is challenging but critical to effective use of METAMODEL MANAGER. To avoid hours

of frustration and loss of data, first time users are encouraged to use the following

approach to folder and file management:

1) Use the installation defaults.

• Install METAMODEL MANAGER in the default Program Files (x86) folder.

• Use the separate C:\MMMProjects folder created during installation for storing

METAMODEL MANAGER projects.

• Keep the project files for your individual models - e.g. OUTBREAK, SPATIAL, and

VORTEX - in the folders created by the METAMODEL MANAGER installation for that

purpose (i.e. C:\SpatialProjects, C:\OutbreakProjects, and C:\Vortex10Projects).

Prior installations of these programs will also have created folders with these

names. METAMODEL MANAGER installation will not remove any files from these

pre-existing folders.

2) Maintain a clear and consistent separation between metamodel and sub-model outputs.

• Prior to running a metamodel, build and test each sub-model within the relevant

program framework (e.g. build and test VORTEX models within VORTEX). Create a

sub-folder within the relevant project folder (C:\Vortex10Projects\Prairie_Dog) to

store all scenarios relevant to the sub-model. In VORTEX and OUTBREAK, all

outputs from simulations run during the building and testing of that sub-model

will be stored within that sub-folder (C:\Vortex10Projects\Prairie_Dog\VOutput).

• Create a sub-folder within C:\MMMProjects for the new metamodel (e.g.

C:\MMMProjects\PD_BFF for a project with models of prairie dogs and ferrets).

• Create folders within the metamodel sub-folder for each of the sub-models. Give

each folder an informative name to distinguish the sub-models from each other

and from the overall metamodel (e.g. C:\MMMProjects\PD_BFF\V_PDog for

Vortex Prairie Dog sub-model and C:\MMMProjects\PD_BFF\V_BFF for Vortex

Black-Footed Ferret sub-model, both within the Prairie Dog – Black-Footed

Ferret MMM project folder).

METAMODEL MANAGER Version 1.0 User’s Manual

18

• Once a sub-model is ready for incorporation into the metamodel, copy the

relevant program file (e.g. Prairie_Dog.xml from C:\VortexProjects\Prairie_Dog)

and situate it within the sub-model folder you prepared for it in the previous step,

renaming the file to reflect its incorporation into the metamodel (e.g.

C:\MMMProjects\PD_BFF\V_PDog\ MMM_PDog.xml).

• Outputs for the Prairie Dog component of the metamodel will be stored in

C:\MMMProjects\PD_BFF\V_PDog\VOutput and will be viewable by opening

the C:\MMMProjects\PD_BFF\V_PDog\ MMM_PDog.xml project file from

within the VORTEX program.

Should further changes to the Prairie Dog model be needed, they should be made to the

original file (stored within the C:\VortexProjects folder) and this file then copied across

to the C:\MMMProjects folder and renamed.

CAUTION: it is possible to keep a single sub-model file within, for example,

the C:\VortexProjects folder, and direct METAMODEL MANAGER to locate the

sub-model there. However, any outputs from metamodel simulations may then

be inadvertently over-written by opening up and running the sub-model as a

standalone simulation from within VORTEX. Similarly, it would be possible to maintain

two copies of the sub-model simultaneously, one within VORTEX and one within

METAMODEL MANAGER. However, this requires that any changes made are made twice –

once in each copy. This is an easy protocol to forget, giving rise to confusion about which

version (if either) carries all of the relevant changes. Disciplined annotation of your

VORTEX projects and informative project and folder names should help reduce problems.

Processing speed

The speed with which METAMODEL MANAGER runs will depend on the nature and

complexity of the sub-models and the programs running them. To understand the time-

limiting steps in the metamodel it is recommended that test models are run initially with

fewer iterations, for shorter periods (or fewer time-steps), and with fewer metamodel

components.

Factors to bear in mind when the metamodel is running slowly:

• Program tasks that act on every individual, every day or time-step of the

simulation will slow things down.

• MMMACRO and EVALUATOR work that operates on individuals is slow.

• MMMACRO is slow in general.

• OUTBREAK is slow compared to VORTEX; it takes much longer to run a single

“year” of the simulation because it is doing daily checks on individuals.

• Initializing and Closing take time if there are many tasks to perform.

Asking METAMODEL MANAGER to show plot lines only at the end of the simulation will

speed up iterations.

METAMODEL MANAGER Version 1.0 User’s Manual

19

Chapter 5. Building a metamodel: what’s
involved?

The following section explains the basic components of METAMODEL MANAGER-

facilitated metamodels, and describes the decisions that must be made and correctly

implemented to ensure that these components perform and communicate with each other,

in the way intended by the user.

METAMODEL MANAGER components

METAMODEL MANAGER builds metamodels from the following three component types:

• System Level Models initialize or define the individuals in the starting

population(s), assigning them (as a minimum) an identity, an age, and a gender.

A System Level program will often manage population demographics (births,

deaths, gender designation, ageing), though this is not a requirement. For multi-

species metamodels (e.g. predator – prey), a separate System-level program may

be included for each species. VORTEX is the System-level program most

commonly used with METAMODEL MANAGER.

• Modifier programs or sub-models may modify characteristics of the system,

population(s), or individuals. For example, the epidemiological simulation

program OUTBREAK may be used to modify the disease status of individuals

according to their modeled susceptibility and exposure to a particular pathogen,

during a simulated year in the life of the population. Those changes in disease

status (e.g., whether individuals have become infected or not) can then be

reported back to the System Level program (e.g., VORTEX), to direct changes in

individual likelihood of dying or breeding. Note that OUTBREAK can also be used

as a System Level program (to initialize or define the individuals in the starting

population), and it is able to manage the demographics of the population as well

as simulating disease.

• Utility programs perform data transformations outside the system and modifier

models. These transformations can function as: 1) translators among the data

formats used by different system or modifier models; 2) simple modifier models

that apply transitions to an individual’s characteristics during a simulation; or 3) a

means of acquiring summary statistics from the metamodel. EVALUATOR and

MMMACRO are the Utility programs that travel with, and are most commonly used

with, METAMODEL MANAGER.

METAMODEL MANAGER Version 1.0 User’s Manual

20

Table 1 provides details of programs that have been adapted for use with METAMODEL

MANAGER. For all other programs additional preparatory work will be needed to enable

interaction. For further information on this see Appendices VI.

Table 1. Programs pre-adapted for compatibility with METAMODEL MANAGER

Program Type Developer Web address for download
VORTEX System- level R. Lacy and J.P.

Pollak
https://scti.tools/downloads/

OUTBREAK System level
or modifier

J.P. Pollak, R.
Lacy, and others

https://scti.tools/downloads/

SPATIAL Modifier J.P. Pollak https://scti.tools/downloads/

EVALUATOR Utility R. Lacy Included in the MMM installation

MMMACRO Utility R. Lacy Included in the MMM installation

PATH HISTORY Utility J.P. Pollak Included in the MMM installation

Specifying and managing the interaction between
METAMODEL MANAGER components

Once System-level and Modifier programs have been determined it will be necessary to

describe to METAMODEL MANAGER the way in which these component programs will

communicate with each other: which one will speak first and for how long; how much of

the information provided will be available to the next and subsequent speakers; will the

information provided require interpretation or translation by a third party before being

handed over? These decisions are communicated through the following steps:

1) Organizing the sequence of operation

Within a METAMODEL MANAGER-facilitated metamodel, the component programs do not

run simultaneously; rather they run sequentially according to a user-defined order. The

order in which sub-models perform their tasks may have consequences for metamodel

outcomes, so should be carefully thought through and tested before finalizing a decision.

2) Synchronizing program cycles

Program cycles or time-steps can vary. For example, in VORTEX, the default time-step is

one year (365 days). That is, once VORTEX has performed each of its functions on a

population, a year is considered to have passed. In OUTBREAK the default time-step is one

day. So, for example, where the intention is to emulate one year in the life of a population

under a disease threat, using VORTEX to manage demography and OUTBREAK to manage

and manipulate disease characteristics, OUTBREAK will need to run 365 times for each

VORTEX run. Where multiple component programs are involved, synchronizing time-steps

can become complex.

https://scti.tools/downloads/
https://scti.tools/downloads/
https://scti.tools/downloads/

METAMODEL MANAGER Version 1.0 User’s Manual

21

3) Managing the exchange of information

METAMODEL MANAGER allows the user to identify one or more potentially influential

input parameters within a model, and to have their magnitude and variability over time

determined by a second model or series of models. For example, the disease state of an

individual (e.g. infected or not infected), obtained from an epidemiological modeling

program such as OUTBREAK, can be used to influence its likelihood of reproduction within

a population viability analysis model such as VORTEX. Preparatory work to understand

and facilitate carefully targeted inter-program information exchange is critical to ensuring

that the metamodel behaves as intended by the user. State variables are the means

through which information is shared and these may operate at three levels:

• Global State Variables (GSVs) – properties of the whole system

• Population State Variables (PSVs) - properties of a population

• Individual State Variables (ISVs) – properties of individuals, including the

VORTEX standard variables of Name, Age, Sex, and Alive.

Any sub-model can create new variables at any level and these can then be available to

other sub-models. Names for GSVs, PSVs, and ISVs need to be the same within all of the

models using them; otherwise METAMODEL MANAGER will treat them as independent

properties of the system, population, or individual. New variables can be created while

the program is running (e.g. at year 50 it is possible to introduce a new variable). Further

information on the use of state variables in programs pre-adapted for use with

METAMODEL MANAGER is provided in Appendix II of this manual. Information on

establishing and managing state variables in VORTEX is provided in the VORTEX manual

(available at https://scti.tools/downloads/).

The coding for the linkage of shared data between metamodel components can be done

directly within the independent specification files (i.e. by creating variables with the same

names within each separate model), through a data translator (EVALUATOR) that is

provided within METAMODEL MANAGER (i.e. by converting values of a variable used by

one model to values of a different variable used by another model), or by using the utility

program MMMACRO (installed with MMM) that allows more complex, multi-step macros

or scripts for manipulating data.

EVALUATOR and MMMACRO provide the user platforms to manipulate variables passing

through METAMODEL MANAGER to and from other programs. EVALUATOR provides the user

with a way to write one-line transformations of variables describing individuals or the

population. MMMACRO provides a simple way for a user to write, “on the fly”, short

BASIC-like programs (often sequences of transformations, each handled by EVALUATOR)

to process the shared variables in METAMODEL MANAGER. Using MMMACRO is not

required to establish linkage in cases where the variables to be shared have the same

name and the same units or scale, and can therefore be directly shared without translation

or transformation. In addition, EVALUATOR functions and even MMMACROs can be

embedded within a VORTEX project to transform variables being passed to or from

VORTEX.

https://scti.tools/downloads/

METAMODEL MANAGER Version 1.0 User’s Manual

22

Box 1. Sketching a metamodel
Creating a two-dimensional representation of the metamodel is an important first step in identifying

what components are required and how they should interact and share data. Two examples are shown

below:

Example 1. From Shoemaker et al., 2014: a metamodel built to explore the effects of prey

metapopulation structure on the viability of black-footed ferrets in plague-impacted landscapes.

Schematic flowchart of the metamodel used in the study. Rectangular nodes represent processes

(software in parentheses), and parallelogram nodes represent data output, which may be used as input

for subsequent processes (indicated by arrows).

Example 2. From Miller et al., 2016: a metamodel built to explore the demographic interactions

between the parasitic Shiny Cowbird and its host, the endangered Yellow-shouldered Blackbird.

Schematic flowchart of Yellow-shouldered Blackbird (YSBL)–Shiny Cowbird (SHCO) metamodel

structure used for the analysis. Rectangles represent software components, and parallelograms identify

model input/output variables from one implementation of VORTEX used to modify algorithms used by

the other. Dashed lines link structural components pertaining to the Shiny Cowbird simulation. Gray

parallelograms indicate final model output metrics used to evaluate model performance.

METAMODEL MANAGER Version 1.0 User’s Manual

23

The next chapter steps through screen by screen to show how these metamodel elements

are specified and brought together using the METAMODEL MANAGER program interface.

CAUTION: as indicated in Box 1, it is possible to link a population-based

model (like RAMAS) to an individual-based model (like OUTBREAK), but there

are potential pitfalls. For example, when data on sex-ratio and population size

are made available from RAMAS, METAMODEL MANAGER creates a list of

individuals with the required characteristics for use by OUTBREAK. However,

when OUTBREAK hands the population back to RAMAS, the individual data are collapsed

once again into population-level statistics. As a result, each time population data are

passed between RAMAS and OUTBREAK a different set of individuals is created, making it

impossible to follow a specific individual over time. When choosing the System-level

model, users will need to consider if they will need to be able to track specific

individuals, that is, to have individuals travel with accumulated characteristics across

time-steps.

METAMODEL MANAGER Version 1.0 User’s Manual

24

Chapter 6. Data input

This chapter takes the user through each METAMODEL MANAGER screen, explaining the

features and choices available and their implications for metamodel construction.

MMM opening screen

Begin a New Project. Click on this option to set up a project for the first time.

Open an Existing Project. Click on this option to browse for and select a project file that

you have worked with previously.

Manage Loaded Modeling Applications. This is primarily for use by program developers

and not for users of existing programs. For information on this feature, see Appendix VI.

About. Click on this to view details about the MMM version in use and its correct

citation.

Quit. Click on this to leave the program.

Figure 4. METAMODEL MANAGER opening screen

METAMODEL MANAGER Version 1.0 User’s Manual

25

Set System Level and Modifier Programs screen

Choosing to begin a new project will take you to the “Set System Level and Modifier

Programs” screen, where you will be asked to specify the System Level and Modifier

program components of your metamodel. You are first prompted to choose a

“Population/System Model” from the drop-down menu (see Figure 5). Once the selection

is made a browser box will open allowing selection of the relevant project file or scenario

for that System Model. For example, a single VORTEX *.xml project file may include

multiple scenarios. Only one of these at a time can be included in the metamodel.

Add Modifier Model. Click on this to add a Modifier Model to the metamodel. Select the

relevant program from the drop-down menu provided. You may add more than one. Note

that it is possible to run a metamodel without any Modifier Models.

Add System Model. Additional System Level Models may be added using this button. For

example, the user may include two VORTEX models, one characterizing a predator, the

other its prey.

Remove Model. Click on this to exclude the highlighted program from the metamodel.

Once the metamodel components have been specified the user can proceed to the next

page by clicking “Next >>”

Note. If you choose “Open an Existing Project” from the MMM opening screen,

METAMODEL MANAGER will import the System Level and Modifier Models included in

the selected file and you will be advanced automatically to the “Dataset Definition”

screen.

Figure 5. Set System Level and Modifier Programs screen

METAMODEL MANAGER Version 1.0 User’s Manual

26

DataSet Definition screen

The DataSet Definition screen (Figure 6) displays what METAMODEL MANAGER knows

about the populations, initial population sizes, and global, population, and individual state

variables being used in your metamodel. You do not make any changes to the

information on this screen; it is displayed just to let you confirm that your metamodel is

being configured as you intended.

Populations – Defined by System Level Model specification files. This lists all

populations referenced in all System Level Models included in the metamodel. If the

System Level Model is VORTEX, the .xml project title is shown. Initial population sizes,

imported from the System Level Model files, are shown on the right. This can be useful

in confirming correct file selection.

Figure 6. DataSet Definition screen

METAMODEL MANAGER Version 1.0 User’s Manual

27

Variables. Beneath the population information is a list of all Global, Population, and

Individual State Variables available to be shared between programs in the metamodel. All

of the programs included in the metamodel are potentially able to create, modify, or just

read any or all of these variables. For a variable to appear on this list it must have been

declared to METAMODEL MANAGER by at least one of the linked programs during its

“initialization” step. The ‘Used By” column indicates which of the linked programs have

“declared” which variables. For more information on configuring loaded applications,

including “initialization”, see Appendix VI. Note that you won’t need to do anything to

configure program initializations if you’re using the pre-loaded applications (VORTEX,

OUTBREAK, etc.).

Order Model Steps screen

On this page you can control the order in which METAMODEL MANAGER runs each

metamodel component, and also specify the number of time-steps or cycles each program

will step through, before passing data to or sharing it with the next program in the

sequence.

This is an important step because different programs may operate by default on different

time-scales. The default for VORTEX is a time-step of 1 year, that is, once VORTEX has

completed all of its standard operations on all of the individuals within a population, a

year is considered to have passed. Individuals then age by one year, and the cycle begins

again. For OUTBREAK, which considers finer scale events that can influence the shifting

Figure 7. Order Model Steps screen

METAMODEL MANAGER Version 1.0 User’s Manual

28

disease status of individuals throughout each year, each cycle or time-step is usually

considered to take a day, such that typically, within each VORTEX time-step there will be

365 OUTBREAK time-steps. METAMODEL MANAGER is blind to these differences unless they

are clearly articulated on this screen (see Box 2 for further illustration).

The screen shows two columns:

Model: lists the components of the metamodel in a tree format, with System Level

programs (in bold) as the main branches and any accompanying Modifier programs

nested beneath, as sub-branches.

Time-steps: shows the number of time-steps of that model completed before data are

passed to the next program on the list.

Note. In the example shown, VORTEX is listed twice; first at the top (as Vortex System)

and also in third place (as Do Vortex Functions). This is because in this metamodel it has

two separate roles. First, VORTEX will create or “initialize” a population of the required

size, for other programs to act on (this is indicated by the System Level listing in BOLD).

VORTEX will then pass information to SPATIAL, which will complete 365 daily time-steps

before returning information to VORTEX to allow it to complete its second task – the

annual sequence of demographic processes (Do Vortex Functions).

The required number of time-steps is typed directly into the cells provided. All other

information entered into this screen is manipulated using the buttons and cells described

below:

Up, Down - allows the user to move selected programs up or down to indicate the order

in which model components will run.

+Group, -Group - allows the user to organize a subset of programs to run among

themselves for a specified number of time steps, before passing information to a program

outside the group. See Box 2 for further information.

+Break, -Break - This allows the user to insert a break into the simulation process in

order to see, change, or save the interim results. Adding a “Break” requires the user to

specify:

• whether the “Break” years are multiples of 1 (i.e. whether the Break occurs

annually) or of a larger number (i.e. the “Breaks” occur once every several years)

or

• whether the “Break” is triggered by a rule that relates to a Global State Variable.

Up, Down arrows are used to position “Breaks”, the first of which is always at year 0.

Once the simulation has begun and the program has paused, the user must select one of

the following:

METAMODEL MANAGER Version 1.0 User’s Manual

29

Show Population - generates a table displaying the entire population with individual

characteristics [e.g. Index, Name, Sex, Age, Alive, Dam, Sire (for VORTEX) and

DiseaseState, StatePermanent, DaysInState, IsVaccinated, Tenure (for OUTBREAK)].

During a “Break”, the user can change any value in the table and can undo those changes

by clicking on the “Reset Changes” button beneath the table. The button next this, “Write

to File…” triggers a browser window in which the user can name and save this table as a

text file.

Stop Simulation - stops the simulation and returns the user to the “Simulate” screen.

OK - resumes the simulation.

Note. The “Break” and “Show Population” features can be used to include user-directed,

reactive management of the population. That is, the user can become an additional “sub-

model” in the system. In the simplest case this can be done by setting up a metamodel

that includes only a single VORTEX model, with METAMODEL MANAGER used to provide

the extra Break utility that allows user-manipulation of the population during simulations.

For example, changes can be made to the Show Population file such as killing or

removing individuals with specific characteristics at each Break. Breaks can be set to

occur only when certain conditions are met that correspond to triggers for management

intervention (e.g. the population sinks below a target threshold). Users can experiment in

this way to see whether, for example, it makes a difference to intervene with management

more than once every 10 years.

+Input, -Input - allows the user to import values to override those generated in the

modeling process. This might be relevant in a situation where the user wants more

control over the impact of temporally occurring events on population characteristics.

Input is applied using a text file.

The text file must be set up according to the following rules:

1. Any rows in the file that begin with "#" will be ignored, so rows relating to

headers and additional information should carry this prefix.

2. Each row of the file represents a new year.

3. Within each row, the variables that you are changing must be separated by a semi-

colon. Order matters!

4. If the variable is an array, separate the elements of the array with a comma

(though see the CAUTION below for advice on using arrays).

The following are examples of simple input files. The first represents a file which sets

two variables for 5 years:

#First example, 2 variables for 5yrs

0.1; 0.9

0.2; 0.8

0.3; 0.7

0.4; 0.6

0.5; 0.5

METAMODEL MANAGER Version 1.0 User’s Manual

30

The second sets an array with 4 elements, for 5 years:

#Second example, 1 array 4 elements for 5yrs

0.1, 0.2, 0.3, 0.4

0.2, 0.3, 0.4, 0.5

0.3, 0.4, 0.5, 0.6

0.4, 0.5, 0.6, 0.7

0.5, 0.6, 0.7, 0.8

And finally, the third sets a regular variable and then an array of 4 elements, for 5 years:

#Third example, 1 normal variable, 1 array 4 elements for 5yrs

0.9; 0.1, 0.2, 0.3, 0.4

0.8; 0.2, 0.3, 0.4, 0.5

0.7; 0.3, 0.4, 0.5, 0.6

0.6; 0.4, 0.5, 0.6, 0.7

0.5; 0.5, 0.6, 0.7, 0.8

CAUTION: to date, using +Input to read arrays is complicated, not well-

tested, and probably best left to the advanced user.

The Input Step Setup window, triggered when “+Input” is selected, will allow the user to

choose the required input text file. The user will also be required to specify which

variables will be input. If more than one variable is involved, order matters. The order

must follow the order of variables in the input text file. The “Up” and “Down” buttons

can be used to regulate the order.

+Output, -Output - allows the user to output the population data stored in METAMODEL

MANAGER (as distinct from the data output specific to sub-models). Clicking “+Output”

will create a file of all data on the population and its individuals, for every time step. This

can be a very useful way to see exactly what is happening in your simulation. Clicking

“+Output” triggers a browser window in which the user can specify a name and location

for this file, and can choose whether to append to the file name the iteration number and

year of the simulation.

+Evaluator, -Evaluator - provides to METAMODEL MANAGER (and other software) the

ability to evaluate user-defined functions, to which are passed sets of parameter values.

MMMACRO is an extension of EVALUATOR, allowing evaluation of short programs

(“methods” or macros) that consist of assignments of variables using EVALUATOR

functions, within simple (BASIC language-like) program flow. Both EVALUATOR and

MMMACRO can be used to transform State Variables that describe the system,

populations, or individuals. See Evaluator.doc (included in the MMM installation) for

more information.

METAMODEL MANAGER Version 1.0 User’s Manual

31

MetaModel Cycles - is the length of time (number of complete metamodel cycles) you

want the simulation to run for. The default is 10.

Iterations - is the number of times you want METAMODEL MANAGER to repeat the

simulation. You should probably start with just one iteration to see if the metamodel is

working. Then run many more iterations to see the range of outcomes that might occur.

When you select “Next”, you will be given an option to save the project. It is not

necessary to save your project in order to continue with the simulation, but it is prudent to

do so.

METAMODEL MANAGER Version 1.0 User’s Manual

32

Box 2. Example of grouping

The metamodel in this example includes a single population, created by VORTEX. Within this

population, the annual fertility of females that have been infected with a particular pathogen

is expected to be zero. Status of infection with this pathogen is tracked daily, for all

individuals in the population, through OUTBREAK. Likelihood of infection is increased in

those individuals spending time in a specific area of habitat which is known to be favored by

the primary vector of the pathogen. Time spent in this area of habitat is tracked daily, by

SPATIAL. To simulate a year in the life of this population requires the following (simplified)

steps:

VORTEX creates a population.

OUTBREAK assigns DAY 1disease status for each individual;

SPATIAL determines DAY 1 movement of individuals among habitat patches;

OUTBREAK calculates DAY 2 disease status using information on contact with high

risk habitat, as reported by SPATIAL;

SPATIAL determines DAY 2 movement of individuals among habitat patches;

Cycle repeats to completion of DAY 365

VORTEX completes annual demographic calculations with female fertility rates modified to

account for infection status, as reported by OUTBREAK.

The correct grouping for this within METAMODEL MANAGER would look like this:

Vortex 1

 Group 365

 Outbreak 1

 Spatial 1

That is, the Group comprising alternating operations of OUTBREAK and SPATIAL will run 365

times for each VORTEX run.

Without such grouping, the model might look like this:

Vortex 1

 Outbreak 365

 Spatial 365

In this case OUTBREAK would run for 1 year (365 time-steps) followed by a year of SPATIAL

(365 time-steps) before the Year 1 demography update in VORTEX. As a result, OUTBREAK

calculations of disease status would not be informed on a daily basis by time spent in high

risk habitat and would not be informed by this at all until the second year of the simulation.

The unintended consequence of this would be that the Year 1 VORTEX calculations for

female fertility would remain unaffected by habitat use.

METAMODEL MANAGER Version 1.0 User’s Manual

33

Chapter 7. Running the simulation and
viewing output

Simulation Options screen

This screen allows the user to select which variables are plotted during or after the

simulation. You can add any global or population state variables to the graph by checking

the relevant box. The default is to plot the number of individuals (N) for each population,

however in some instances you may wish to turn this off, as the scale needed to show N

may make it impossible to see other variables (e.g. those measured on a scale of 0-1).

Figure 8. Simulation

Options screen

METAMODEL MANAGER Version 1.0 User’s Manual

34

Note. One potential use of this is to display relative population sizes (on a scale of 0 to 1)

in situations when different species have very different sizes and otherwise it would be

hard to see the trends in N for the rare species on the same graph as the abundant species.

To do this requires creating a GSV in each VORTEX (or other System Level Model)

project (e.g., GS1=N/K) and then showing these GSVs rather than N on the graph.

On the lower part of this screen you are asked to specify whether you want to see the

graph updated each year (i.e., in “real time”), after each iteration, after all iterations are

completed, or not at all. The graphing is slow, so if you are running many iterations (in

which case the graph will slowly turn into a solid blob of color that usually cannot be

read), it is faster to show the graph at the end of each iteration, and even faster to run it

without showing the graph at all.

Clicking “OK” takes you to the “Simulate” screen.

Simulate screen

Simulate! - enables METAMODEL MANAGER to begin running the metamodel simulation.

A bar across the bottom indicates progress and on completion, a small box saying

“Complete!” will appear.

Figure 9. Simulate screen

METAMODEL MANAGER Version 1.0 User’s Manual

35

After the run is complete you can edit the graph by double-clicking on it to open a

graphics editor. You can also print or save the graph (in various formats) and the data (as

an Excel file).

After each simulation, you can either repeat it by clicking “Simulate!” again, close the

screen to return to the previous screen(s), change options and then re-run, or press “Quit

MMM”.

Quit MMM - provides a way to exit the program after the simulation is complete.

Unless the user specifies an “Output” step in the “Order Model Steps” screen,

METAMODEL MANAGER itself won’t produce any output files. Instead, output is viewed

through the sub-model programs (e.g. VORTEX, OUTBREAK, SPATIAL). To see output, quit

METAMODEL MANAGER and open up the relevant sub-model program. For further details

on viewing output, refer to the user manuals for the individual programs.

METAMODEL MANAGER Version 1.0 User’s Manual

36

Chapter 8. Tutorial

This chapter steps the user through an example of the use of METAMODEL MANAGER to

model black-footed ferrets and their prairie dog prey, in the presence of sylvatic plague.

The data files for this example are included in the installation of METAMODEL MANAGER,

located in the C:\MMMProjects\Samples folder along with other sample projects. First

time users are encouraged to complete this tutorial to familiarize themselves with the

program.

Black-footed ferrets are one of the most endangered species in the United States. They

have a specialized diet, with prairie dogs making up over 90% of the food ingested.

Prairie dogs are subject to the sylvatic plague, which can reduce population size

dramatically.

CAUTION: please note that in many cases, parameters are based on fictional

information. The example presented below is for educational purposes only.

MMM opening screen
1) Select “Begin a New Project”

Setting System Level and Modifier Programs screen
1) Select the program, project and scenario that will “initialize” or determine the starting

characteristics of the Prairie Dog population (and will later perform demographic

functions on that population):

a. From the drop-down list in the first column of the “Population/ System

Models” table, select “VORTEX”.

b. Open the browser window next to “Choose a VORTEX project file” and select

“MMM_PDog.xml”. If it is not immediately available to you in the browser

window, navigate to it in the C:\MMMProjects\Samples folder.

c. Select the “PD MM ReproEffect” scenario from the “Choose” window.

2) Select the OUTBREAK model that will modify the disease status of individuals within

the Prairie Dog population:

a. Select the “Add a Modifier Model” button, and then choose “OUTBREAK”

from the drop-down list.

b. Open the browser window next to “Choose an OUTBREAK project file” and

select “PDPlague.xml”. If it is not immediately available to you in the browser

window, navigate to it in the C:\MMMProjects\Samples folder.

c. Select “Scenario1” from the “Choose” window.

METAMODEL MANAGER Version 1.0 User’s Manual

37

3) Select the program, project and scenario that will “initialize” or determine the starting

characteristics of the Black-footed Ferret population (and will later perform all

demographic functions on that population):

a. Select “Add a System Model”, select “VORTEX” from the “Model” drop-

down list.

b. Select “MMM_BFFerrets.xml” from the “Choose a VORTEX project file”

browser window.

c. Select the “BFF MM Worse” scenario from the “Choose” window.

4) There are no other metamodel components. Select “Next” to move to the next screen.

DataSet Definition screen

1) Check that the initial Prairie Dog population carries 250 individuals, and that the

initial Black-footed Ferret population carries 50.

2) Check that you can see: two Global State Variables (GSVs), seven Population

State Variables (PSVs), and ten Individual State Variables (ISVs). Then select

“Next”.

Figure 10. Setting System Level and Modifier Programs - Tutorial

METAMODEL MANAGER Version 1.0 User’s Manual

38

Order Model Steps screen

1) OUTBREAK runs on a daily cycle and so will need to run 365 cycles for every one

(annual) cycle of VORTEX. Edit the OUTBREAK “Time Steps” to read 365.

2) Change “Total Years” from 10 to 100, and Iterations to 50 (note that you will

want to run more iterations for scientific analyses but this will take longer).

3) Select “Save” and when the “Save as” window appears, navigate to the

C:\MMMProjects\Samples folder and save the project with the name

“MyFirstTutorial”.

4) Select “Next”.

Figure 11. DataSet Definition - Tutorial

Figure 12. Order Model Steps - Tutorial

METAMODEL MANAGER Version 1.0 User’s Manual

39

Simulation Options screen

1) Choose which variables to plot and how you would like to see them displayed. The

default of plotting population size (N) for each of the modelled populations is already

selected. Leave this in place and select “Show plot lines in real time”. Select “OK”.

Simulate screen

1) Select “Simulate!”. The simulation will start.

2) When the processing is finished, you will see a “Complete!” box. Select “OK” to

remove it and return to your graph.

Note. Initially, the screen may not show the graph correctly as in some cases your

graphics card is not able to keep up with the simulation processing. Also, if you click

elsewhere to move control to a different window, the simulation screen may cease

Figure 13. Simulation Options -

Tutorial

METAMODEL MANAGER Version 1.0 User’s Manual

40

updating and display a message indicating that VORTEX is “not responding”. Do not

worry. The simulations are continuing to work away in the background. The final graph

will be displayed correctly when the simulation is finished.

Congratulations! You have completed your first metamodel analysis of a dynamic, two-

species system in which the prey species is subject to epidemics of disease. The final

figure generated should show considerable fluctuations in Prairie Dog population size (as

a result of disease), sometimes leading to the decline or local extinction of Black-footed

ferrets. The modelled Prairie Dog populations rarely go extinct despite the large

fluctuations.

Where are my results?
Results are viewed through the linked programs (in this case in VORTEX and OUTBREAK).

The process for viewing output within linked programs will depend on where and how

each program stores results. Information on this is available in the relevant manuals.

VORTEX stores results in subfolders called VOutput, which are housed within the relevant

project folders. To view results for MyFirstTutorial, which is housed within the

“Samples” project folder, open VORTEX, navigate to C:\MMMProjects\Samples and select

either MMM_BFFerrets or MMM_PDog for Black-footed Ferret and Prairie Dog results

respectively.

Figure 14. Order Model Steps - Tutorial

METAMODEL MANAGER Version 1.0 User’s Manual

41

When OUTBREAK is run within METAMODEL MANAGER it creates a copy of the project file,

adding to it information about the linked System Model and population. For example, the

copy of OUTBREAK file “PDPlague” might be named “PDPlague _MMM_PDog -

Population 1”, and its output stored in an associated subfolder “PDPlague_MMM_PDog -

Population 1_Results”. This ensures that multiple System Models or multiple populations

in a metamodel that call on the same OUTBREAK project and scenario will not overwrite

each other’s output.

To prevent VORTEX over-writing results when multiple metamodels call on the same

VORTEX project and scenario, it is necessary to put copies of all of the relevant project

files into separate folders, before running the various metamodels.

Using breakpoints within METAMODEL MANAGER

To learn more about the options available in METAMODEL MANAGER, select “Quit

MMM”, and re-open the program:

Opening Screen
1) Select “Open an Existing Project” from the opening screen.

2) Select “MyFirstTutorial” from the C:\MMMProjects\Samples project folder.

Order Model Steps
1) Create a break at the end of the metamodel cycle by selecting “+ Break” and,

using the “Up” and “Down” buttons, making sure it is the last item on the list of

programs.

2) In the “New Break” window that appears, change “Year is a multiple of” from 1

to 10 (i.e. change from an annual break to a break every 10 years) and select

“OK”.

3) Change “Total Years” to 50, and iterations to 1, so the metamodel will run faster,

and select “Next”. Accept the current setting on the “Simulation Options” screen.

Simulate Screen
1) When “Simulate!” is selected a “Paused: Iteration” screen will appear showing

population statistics at year 0.

2) With “MMM_PDog – Population 1” highlighted, select “Show Population”.

Population details at year (or time step) 0 will appear for Prairie Dogs, including

their OUTBREAK disease state characteristics.

3) With “MMM_BFFerrets – Population 1” highlighted, select “Show Population”.

Population statistics at time step 0 will appear for Black-footed Ferrets. There is

no disease state information to show because VORTEX was run alone for this

population without OUTBREAK as a modifier.

METAMODEL MANAGER Version 1.0 User’s Manual

42

4) Save the statistics of Black-footed Ferrets to a file by selecting “Write to File” and

assigning the filename “MyFirstTutorial_BFFBreak0”.

5) Select “OK” on the “Population MMM_BFFerrets – Population 1” screen and

then again on the “Paused: Iteration” screen, to resume the simulation, which will

pause again at year 10. Write the Black-footed Ferret data to file again, assigning

the filename MyFirstTutorial_BFFBreak10. Repeat this through the first iteration.

6) You can now compare variables at specific breakpoints. You might do this to

better understand the patterns you see in your overall MMM results.

7) If you want to use the break to manipulate the population, you can do so on the

list of individual variables displayed when you “Show Population”. To test this,

go ahead and kill a few prairie dogs (changing Alive code to 0), or infect them

(changing DiseaseState to 3), or cure them (change Disease State from 3 to 4).

Figure 15. Prairie dog population at Break0 - Tutorial

METAMODEL MANAGER Version 1.0 User’s Manual

43

Chapter 9. Trouble shooting

Problem: Models don’t seem to be influencing each other in the way you expect.

Results don’t look different from when you run models independently.

Solution: Check to make sure your models are sharing variables. Are the variables you

intend to share named identically in the interacting models? Do you need to add an

EVALUATOR or MMMACRO to translate the scale or units of the variable from one model to

the proper scale of the variable in another model?

You can try running the model one iteration at a time and/or adding breakpoints to look at

the values of specific variables. This can help you identify if the value of a variable in

Model 2 is as expected, given the value of a variable in Model 1.

Be aware, however, that just because your results are unexpected does not mean that they

are wrong. It is possible that a complex system does behave differently than you would

have guessed. That is why we run metamodels!

Problem: MMM results can’t be found.

Solution: Results will be stored independently for each model, and to view them, you’ll

have to use the program for each model. For example, let’s say your metamodel includes

a VORTEX system model and you’ve saved your VORTEX *.xml project file within a folder

you created for your metamodel. Your file structure might be something like this:

C:\Users\You\MMMProjects\YourProject\YourVortexModel\VOutput

You will need to use VORTEX to open the *.xml VORTEX project file that is in the

YourVortexModel folder.

Problem: I can’t save my MMM project file.

Solution: You might not have write access to the directory where MMM is trying to save

the project. Try saving in a folder, like ‘My Documents’.

Problem: After running some metamodel simulations, going back a few screens to

change settings, and then running more simulations, METAMODEL MANAGER

crashed.

Solution: When moving back through screens to change metamodel settings,

METAMODEL MANAGER can sometimes get confused. (It happens to the best of us.) When

running different metamodels, it is safest to exit METAMODEL MANAGER after completing

one analysis, and then re-start the program to load and run your next metamodel.

Problem: Sometimes, METAMODEL MANAGER won’t let me back up to change

settings on earlier screens.

METAMODEL MANAGER Version 1.0 User’s Manual

44

Solution: Some settings in METAMODEL MANAGER require the program to do a lot of work

to configure your metamodel. Consequently, the program won’t let you go back to

change some of the more fundamental aspects of the metamodel that you are building. If

you need to start over with basic settings for your project, close METAMODEL MANAGER

and start again.

Problem: I want to simulate some changes in the system that cannot be modeled in

VORTEX or OUTBREAK or any of the sub-models that seem to be available (e.g.,

maybe changes in social structure, or habitat characteristics, or climate

fluctuations).

Solution: Link in a different program written by you or someone else as a Modifier model

(see Appendix VI), or create a small MMMACRO to represent the processes (see Appendix

V), or link an R script to METAMODEL MANAGER (see Appendix V).

Problem: The reviewer of my manuscript (or my academic advisor, or my boss, or

just me) wants to see the algorithms used by METAMODEL MANAGER so that I can

confirm that it is doing what I want.

Solution: METAMODEL MANAGER does not have much in the way of algorithms, at least

not ones that carry out computations. The computational work is done by the sub-models

(VORTEX, OUTBREAK, RAMAS, MMMACRO, etc.), while METAMODEL MANAGER controls

the sequence in which the sub-models access the shared data and the flow of data among

the sub-models. Go to the documentation for the linked programs to learn how they work.

If you really do need to see the source code for METAMODEL MANAGER (or MMMACRO or

OUTBREAK), it is available for inspection in the SourceCode folder within the

METAMODEL MANAGER program folder (usually in C:\Program Files (x86)\Species

Conservation Toolkit Initiative\MetaModelManager).

Problem: It is really hard to create a complex metamodel and be certain that it is

modeling my case properly. Where can I get help?

Solution: Tap into the expertise or curiosity of your friends. Often asking a colleague to

look over your project leads to him or her seeing something that you overlooked. (Or just

confirming that your model does look good.)

You can also join the MetaModels Listserv (https://scti.tools/help-support/#Community)

to share problems and ideas with other users. At this time, there are not yet many users on

this list, but we expect that as more people use METAMODEL MANAGER, the list will

become a very useful network.

If you need further help from an experienced and skilled user of METAMODEL MANAGER,

either the Species Conservation Toolkit Initiative (email: help@scti.tools) or the IUCN

SSC Conservation Planning Specialist Group (email: office@cpsg.org) might be able to

put you in contact with an expert user who could help (most likely for reasonable

compensation).

https://scti.tools/help-support/#Community
mailto:help@scti.tools
mailto:office@cpsg.org

METAMODEL MANAGER Version 1.0 User’s Manual

45

Question: The values for many of the input parameters in my models are very

uncertain. How can I do sensitivity tests to determine if the possible alternative

values would significantly influence my results?

Solution: METAMODEL MANAGER does not (yet) have any built-in tools for sensitivity

testing. There are two approaches that you can use to test the effect of alternative values

for model input. First, you can create multiple scenarios, each as a separate metamodel,

with alternative parameter values (or even model structure). METAMODEL MANAGER can

be run from a command line, with the name of the project file specified as a parameter

passed to MeMoMa.exe, making it possible to use a shell program to create and run many

metamodel scenarios without requiring manual specification and starting of each one.

Analyzing the results across such metamodel scenarios will then likely need to be done

within the interfaces of the separate sub-models, or in external statistical packages used to

compile and analyze results across scenarios.

Alternatively, within the sub-models of a metamodel, or via the utility programs

EVALUATOR or MMMACRO, you can often sample the values for uncertain variables at

each iteration. For example, uncertainty in a dispersal rate might be estimated with a

normal distribution. By sampling from the normal distribution the rate to be used in each

iteration, the results across iterations will represent the range of possible outcomes, and

influence of the uncertain dispersal rate on outcomes can be quantified and tested with

appropriate statistical analysis. The details of how best to do such sensitivity testing are

much beyond the scope of this manual, and depend on the sub-models you are running,

the variables that are uncertain, and the nature (distribution) of that uncertainty.

METAMODEL MANAGER Version 1.0 User’s Manual

46

Appendix I. Literature cited and other
useful references

Bradshaw, C.J.A., McMahon, C.R., Miller, P.S., Lacy, R.C., Watts, M.J., Verant, M.L.,

Pollak, J.P., Fordham, D.A., Prowse, T.A.A. and B.W. Brook (2011). Novel coupling of

individual-based epidemiological and demographic models predicts realistic dynamics

of tuberculosis in alien buffalo. Journal of Applied Ecology 49: 268–277

Lacy, R.C., Miller, P.S., Nyhus, P.J., Pollak, J.P., Raboy, B.E., and Zeigler, S.L. (2013)

Metamodels for Transdisciplinary Analysis of Wildlife Population Dynamics. PLoS ONE

8(12)

Miller, P.S., and R.C. Lacy. 2003. Metamodels as a tool for risk assessment. Pp. 333-351

in: F.R. Westley and P.S. Miller, eds. Experiments in Consilience: Integrating Social and

Scientific Responses to Save Endangered Species. Island Press, Washington, DC.

Miller P.S., Lacy R.C., Medina-Miranda, R.., López-Ortiz, R., Díaz-Soltero, H. (2016).

Confronting the invasive species crisis with metamodel analysis: An explicit, two-species

demographic assessment of an endangered bird and its brood parasite in Puerto Rico.

Biological Conservation 196:124–132

Nyhus, P. J., Lacy, R.C., Westley, F.R., Miller, P.S., Vredenburg, H., Paquet, P., and J.P.

Pollak (2007). Tackling biocomplexity with meta-models for species risk assessment.

Ecology and Society 12(1): 31

Prowse, T.A.A., Johnson, C.N., Lacy, R.C., Bradshaw, C.J.A., Pollak, J.P., Watts, M.J.

and B.W. Brook (2013). No need for disease: testing extinction hypotheses for the

thylacine using multi-species metamodels. Journal of Animal Ecology 2013 (82): 355–

364

Wells, K., Brook, B.W., Lacy, R.C., Mutze, G.J., Peacock, D.E., Sinclair, R.G.,

Schwensow, N., Cassey, P., O’Hara, R.B. and D.A. Fordham (2015). Timing and severity

of immunizing diseases in rabbits is controlled by seasonal matching of host and

pathogen dynamics. J. R. Soc. Interface 12:20141184

Shoemaker, K.T., Lacy, R.C., Verant, M.L., Brook, B.W., Livieri, T.M., Miller, P.S.,

D.A. Fordham, D.A. and H.R. Akcakaya (2014). Effects of prey metapopulation structure

on the viability of black-footed ferrets in plague.-impacted landscapes: a metamodelling

approach. Journal of Applied Ecology 2014 (51): 735–745

http://www.sciencedirect.com/science/article/pii/S0006320716300301
http://www.sciencedirect.com/science/article/pii/S0006320716300301
http://www.sciencedirect.com/science/article/pii/S0006320716300301#af0015
http://www.sciencedirect.com/science/article/pii/S0006320716300301
http://www.sciencedirect.com/science/article/pii/S0006320716300301
http://www.sciencedirect.com/science/journal/00063207/196/supp/C

METAMODEL MANAGER Version 1.0 User’s Manual

47

Appendix II. Understanding the use of
State Variables to model biological links

METAMODEL MANAGER shares data among sub-models via Global (system), Population,

and Individual State Variables, and the use of these variables in an “open-data”

framework is at the core of metamodels. The variables must be defined by one or more of

the sub-models, and then accessed by other sub-models as the metamodel simulation is

running. The values of the state variables might be changed by just one or possibly

several of the sub-models. For example, both VORTEX and OUTBREAK might cause some

individuals to die (possibly from predation and disease), but presumably only the System-

level model would set each individual’s sex (unless the species can change sex through

the lifetime) and would increment age. Importantly, the shared variables are then used by

the sub-models as inputs into their processes. For example, the age and sex specified by

VORTEX might alter the probability of becoming infected by a disease in OUTBREAK, and

the disease status emerging from OUTBREAK might affect reproduction or dispersal in

VORTEX.

VORTEX offers the infrastructure to set up user-defined state variables in order to provide

extra information regarding an individual, population, or metapopulation. Defining and

using these variables is key to creating successful linkages between programs in order to

express how the parameters of one population may be influenced by outcomes from other

programs. VORTEX has the same three levels of state variables that are handled in

METAMODEL MANAGER: global (GSV), population (PSV), and individual (ISV). These

state variables must be numerical, and can change over time. (See the VORTEX manual for

more information on how it creates and uses state variables.)

Other modeling programs may also provide the means for users to set up state variables,

or may have pre-defined state variables that are shared through METAMODEL MANAGER, or

may read (from METAMODEL MANAGER) the variables created by other linked programs.

For example, OUTBREAK always creates a PSV called “Prevalence”, and ISVs called

“DiseaseState”, “DaysInState”, “StatePermanent”, and “IsVaccinated”. In addition,

OUTBREAK can use any other population or individual state variables created by other

programs and handed to it by METAMODEL MANAGER, if those variables are also defined

within OUTBREAK.

Any program linked to MMM can access the state variables defined by other linked

programs, or can create new variables and add them to the data set that is shared with all

linked programs. This allows each linked program to read and optionally change the

population and individual data created by other programs.

Just as writing your own model to be linked in to others via MMM is not something that

can be explained quickly in this manual, understanding how to make use of the data that

flow among linked programs is also not something that will be immediately obvious to a

METAMODEL MANAGER Version 1.0 User’s Manual

48

new user. Later versions of this manual will provide more detailed explanations and

examples, but for now an example is very briefly described below.

Example: Linking VORTEX-VORTEX

In a two-species two-VORTEX metamodel, information from each species that needs to

inform the model of the other species would be coded into GSVs such as in the case of

BFF-PD demonstrated in the earlier chapter. The following is a more detailed description

of how to set up that linkage.

1) Creating the Operational Link:

A key to creating a link to share data between two VORTEX models is to define the same

(or at least overlapping) set of global or population state variables (GSVs and PSVs) that

will be shared by both programs but, in most cases, modified only by one of the two

models. In this example, GS1 is set to be the number of ferrets and GS2 is set to be the

number of prairie dogs.

For BFFs in their own BFF sub-model, the number of individuals (GS1) is set each year

to “N”, the number of individuals generated by the VORTEX model of the ferrets. For

BFFs in the PD sub-model, the BFF population size (GS1) is first set to 50 and then

assigned to remain to be GS1, which means that the PD model will not change this GS1

variable but will read the number of ferrets for use in specifying impacts (predation!) on

the prairie dogs. It would usually be meaningless for the PD VORTEX model to change the

GS1 that is the number of ferrets, because that N is an emergent property of the BFF

individual-based simulation.

GS2, the number of PDs, is set in the PD sub-model each year to “N”, the number of

individuals generated by its model. In the BFF model, the number of PDs (GS2) is first

set to 250 and then assigned to stay as GS2, which serves to read the information from

the PD sub-model but not try to change the number of prairie dogs from within the ferret

sub-model.

Global

State Vars

Label Trophic Level

PD (Prey) BFF(Predator)

Initializ. fn Transition fn Initializ. fn Transition fn

GS1 BFF 50 =GS1 =N =N

GS2 PD =N =N 250 =GS2

It is important to keep in mind that METAMODEL MANAGER knows that a state variable is

to be shared by two components only if it has the same label in both. Thus, if the PD sub-

model changes a GSV labeled “PD”, then any GSV labeled “PD” in the BFF sub-model

will be changed synchronously. The “GS1”, “GS2”, etc. designations used in VORTEX are

meaningless to METAMODEL MANAGER. Thus, the variable BFF might be GS1 in the PD

model, but GS2 in the BFF model, but it will still be shared across the sub-models via

METAMODEL MANAGER. This also means that you need to be careful with the labels of

shared variables. If one sub-model uses the label “BFF-N” and the other uses the label

METAMODEL MANAGER Version 1.0 User’s Manual

49

“BFFN”, they will be treated as independent, unlinked variables (even if both are GS1 in

the VORTEX projects). You can give GS1 the label “GS1” in both models, and then they

will link properly, but this would be a bad practice because nothing about the variable

name indicates what data it contains.

2) Creating the Ecological Link:

The ultimate ecological link between the two VORTEX models occur when the GSVs are

later used in equations to parameterize the demographics of each of the two populations.

In our example, the mortality of PDs in the PD sub-model for females from age 0 to 1

equals 45+((15*BFF)/N). The fewer PDs present in the population relative to BFFs, the

more young PD mortality goes up. In the BFF sub-model, first year mortality is specified

as 46.6+((20*N)/(1+PD)), so that a higher ratio of predators to prey reduces the survival

of young ferrets.

Links between sub-models may also be made through using ISVs, whereby specific

information is tied to specific individuals in the population. In the BFF-PD-Plague

metamodel, IS1 tracks the DiseaseState of each prairie dog. DiseaseState is determined

within the OUTBREAK model of plague, and transferred to the VORTEX sub-model by

MMM. VORTEX then uses this IS1 variable to modify the reproductive rate of prairie

dogs, with a function that specifies that currently sick (DiseaseState ‘I’: IS1=3) females

cannot reproduce. VORTEX ignores the disease status of each individual when setting

mortality rates, because the death of prairie dogs from plague occurs within the

OUTBREAK model (with 50% mortality of diseased PDs).

We do not want to imply that these few simple relationships describe accurately the

functional response of predator to prey and the reverse; we just inserted some simple

functions to show how such relationships can be specified and modeled within a 2-

species metamodel, with disease impacting one of the species. A more complete and

realistic metamodel for ferrets and prairie dogs might include reciprocal effects on adult

survival of both species, effects on reproduction of ferrets, and possibly other functions

defining the interactions between the species.

METAMODEL MANAGER Version 1.0 User’s Manual

50

Appendix III. Using VORTEX in METAMODEL

MANAGER

It is not possible to use a metamodel that links a VORTEX model of population dynamics

to models of other processes or to VORTEX models of other species unless you first are

fully familiar with the use of VORTEX. This includes knowing how to use state variables to

define and track global, population, and individual properties and then use the GSVs,

PSVs, and ISVs as parameters within functions that define demographic rates or other

input parameters. Therefore, if you are not experienced at using VORTEX, STOP here, and

go learn VORTEX first.

When you install METAMODEL MANAGER, it will install in the same program folder the

VORTEX simulation library (vortex10lib.dll) that is required to run VORTEX as a component

of a metamodel. You should also download and install the full VORTEX program

(downloaded from https://scti.tools/downloads/) so that you have the user interface for

building VORTEX projects and displaying results.

To create a metamodel that includes a VORTEX component, you should start by creating

the VORTEX project that describes the population dynamics. Initially, focus on the basic

demography of the species, and don’t worry (yet) about state variables needed for the

metamodel and the ecological linkages to properties of other models. Test this initial

VORTEX model carefully to confirm that the demographic model is performing as

expected. It might also be a good idea at this stage to run sensitivity tests to determine

which uncertain input variables have the largest effects on population trajectories. Once

you link the VORTEX model with other sub-models in a metamodel, uncertainties

compound (or even explode!), so it is wise to first determine for which VORTEX

parameters it will be important to carry the uncertainty through to the metamodel.

Next, add the state variables that will be needed to link the VORTEX model to other

models. The values of the state variables that will be accessing information coming from

other models can be set simply to a plausible default value for the initialization function

and a transition function that leaves the variable unchanged. Pay careful attention to what

labels you assign to these state variables. Although functions within the VORTEX model

can refer to a state variable either by its label or by GS1, GS2, PS1, IS1, etc.,

METAMODEL MANAGER will use the labels to share the state variable with other models.

There are a few individual properties that are automatically made available from VORTEX

to METAMODEL MANAGER, so they do not need to be assigned to Individual State

Variables in VORTEX. These are: NAME (=ID in VORTEX), INDEX, SEX, AGE (in years),

and ALIVE. Any other individual properties (such as genotypes or mates) need to be

assigned to an ISV if they are to be made accessible to other linked programs. Note that if

another component model in a metamodel changes a state variable in VORTEX, the state

variable itself is changed but the trait that was assigned to the state variable will not be.

For example, if an ISV that is assigned the mtDNA haplotype (“=MT”) is changed by

https://scti.tools/downloads/

METAMODEL MANAGER Version 1.0 User’s Manual

51

another program, that does not then change the mtDNA of the individual in VORTEX. (I.e.,

the assignment of the haplotype to the ISV is unidirectional; a change in the ISV does not

then change the haplotype). Similarly, if an ISV (with perhaps label MySex) is set in

VORTEX to be the sex (“=S”), a change in that ISV by METAMODEL MANAGER does not

change the sex of the individual in VORTEX. However, SEX is automatically defined as a

shared individual variable in METAMODEL MANAGER, so if another component of the

metamodel changes SEX, that will change the sex of the individual in VORTEX.

Note also that the case of a variable is ignored in VORTEX (e.g., S and s are the same in

VORTEX functions, and a GSV labeled Habitat will be the same as one labeled HABITAT)

– as VORTEX internally converts all functions to upper case. However, for some

component models linked through METAMODEL MANAGER, and in METAMODEL MANAGER

itself, variable labels are case sensitive. Thus, a state variable called HABITAT in

VORTEX will not be seen as the same as one called Habitat in another linked program.

After the state variables needed for linking models are created in VORTEX, add to your

VORTEX scenario the functions that are needed to make these state variables influence

demographic rates. Then, with default values of the state variables that will be obtained

from other models when the metamodel is run, test the stand-alone VORTEX model to be

sure that the population projections are plausible under these conditions.

Now, go build the other components of your metamodel, build the metamodel in

METAMODEL MANAGER, and run your metamodel!

After the metamodel has run, you can view the results in the Text Output and Tables &

Graphs sections of the VORTEX interface by opening the VORTEX project file that was used

in the metamodel. For examining the results across multiple species that were run in

separate VORTEX models linked via METAMODEL MANAGER, it is often useful to make sure

that the output metrics you wish to see for all the species are defined within Global State

Variables that are shared. In that way, you can access them all from the output tables

saved from one VORTEX model, rather than needing to consolidate results across models.

One more caution about constructing metamodels that include VORTEX simulations of

populations: think carefully about when variables are updated in the sequence of the

VORTEX year and the metamodel time step. For example, in the prairie dog – ferret

example described earlier, the GSV BFF will be updated in the ferret model each time

that GSVs are updated, but the internal variable N (to which BFF is set in each update)

will be updated between each event within the VORTEX annual cycle. From the

perspective of the PD sub-model, the variable BFF has the value that it was last assigned

in the BFF sub-model when that VORTEX component had control. This might or might not

be the same as the last value of N in the BFF sub-model, depending on when in the

annual sequence of VORTEX events the UpdateVars occurs in the BFF sub-model.

METAMODEL MANAGER Version 1.0 User’s Manual

52

Appendix IV. Using OUTBREAK in METAMODEL

MANAGER

OUTBREAK can be run as either a System-level model (creating the initial population and

doing its own demography) or as a Modifier model (changing only the disease state of

individuals whose demography is managed by VORTEX or some other System model).

When OUTBREAK is used as a Modifier model in a metamodel, its demography is disabled

– that is, the values on its Initial Population and Demography input tabs are ignored,

because they are replaced by the demography provided by the System-level model.

The demographic simulation in OUTBREAK (when it is used as the System-level model)

differs in several ways from the one in VORTEX – primarily in that OUTBREAK models

events on a daily basis so that demographic events are interlaced with disease processes,

and OUTBREAK does not include many aspects of stochasticity (e.g., environmental

variation, catastrophes, genetic drift) that are modeled in VORTEX.

OUTBREAK now provides the option (as of version 2.5) for the user to create Population or

Individual state variables, and any PSVs and ISVs created in OUTBREAK will be made

accessible to METAMODEL MANAGER. In addition, OUTBREAK always creates a PSV called

“Prevalence”, and ISVs called “DiseaseState”, “DaysInState”, “StatePermanent”, and

“IsVaccinated”. Within functions defining rates in OUTBREAK, these variables should be

referenced by the labels PREV, Z, DSTATE, CHRONIC, and V, respectively. The four

ISVs describing the disease condition of individuals can be changed by other models in a

metamodel. OUTBREAK does not provide the ability to create Global state variables,

because OUTBREAK is always (for now) a single population model. However, any GSV

available in METAMODEL MANAGER can be linked to a similarly labeled PSV in

OUTBREAK, allowing OUTBREAK to access and change the GSVs of METAMODEL MANAGER

or other linked models.

OUTBREAK can use any GSVs, PSVs, or ISVs created by other programs and handed to it

by METAMODEL MANAGER, if those state variables are also declared within the OUTBREAK

project. Thus, for example, if a VORTEX scenario and the OUTBREAK scenario each create

an ISV called BodyCondition, within the linked OUTBREAK the probability of disease

transmission (or any other input variable) can be specified to be a function of

BodyCondition. Similarly, with an ISV set to be the genotype at one or more loci, disease

susceptibility or recovery rates can be made to be dependent on the genotypes that are

simulated in VORTEX.

OUTBREAK does provide a utility to simulate movements of individuals on the landscape,

because the distance between individuals can be an important determinant of disease

transmission. The spatial model in OUTBREAK is relatively basic, with the user needing to

specify the functions that define movement probabilities on an X-Y grid at each daily

METAMODEL MANAGER Version 1.0 User’s Manual

53

time step, but this is a capability that is not included in VORTEX. Therefore, in a linked

VORTEX-OUTBREAK metamodel, OUTBREAK can be used to simulate individual movements,

and VORTEX can use the X-Y location of each individual as a determinant of demographic

rates or events. For example, the criteria for acceptable mates in VORTEX can be that a

potential mate must be within a certain Euclidean distance (VORTEX variable DIST) to be

accepted. Or the probability of mortality can be specified to be higher in some regions of

the X-Y space.

When using OUTBREAK or VORTEX in a metamodel with spatial movement, the locations

of individuals should be obtained with variables XCOORD and YCOORD, rather than X

and Y. This is because X and Y have alternative meanings as built-in variables in VORTEX

(X = number of females, Y = year). Thus, the ISVs in VORTEX that will be used for spatial

locations and linked to the OUTBREAK simulation should be labeled XCOORD and

YCOORD, and any functions of location in VORTEX or OUTBREAK should use these labels.

As with VORTEX, after the metamodel has run, you can view the tables and graphs of

OUTBREAK results (the summaries of disease dynamics) by opening the OUTBREAK project

in the full OUTBREAK interface.

METAMODEL MANAGER Version 1.0 User’s Manual

54

Appendix V. Using EVALUATOR and
MMMACRO in metamodels

EVALUATOR was developed as a utility program to provide to modeling software the

ability to evaluate user-defined functions, to which are passed the sets of parameter

values. EVALUATOR is included in the VORTEX population simulation software and

METAMODEL MANAGER to provide these programs with the ability to evaluate functions.

Macro is an extension of EVALUATOR, allowing evaluation of short programs (“methods”,

“scripts”, or macros) that consist of assignments of variables using EVALUATOR functions,

within simple (Basic language-like) program flow. Macro has been embedded within

VORTEX (as VMACRO) and METAMODEL MANAGER (as MMMACRO). EVALUATOR and Macro

have also been packaged into a separate MS Windows dll library so that other such

programs can make use of these tools. Both EVALUATOR and Macro also now support

calling R scripts as a way to determine the values of variables with more complex

algorithms (as long as they can be coded in R).

EVALUATOR is written in C# and compiled with MS Visual Studio.Net for use on any

Windows-based computer (including Macs running Windows emulators or compatible

OSes). The source code for EVALUATOR is included in the MMM installation. Technical

information for programmers about the use of the EVALUATOR library in other programs is

provided in the Evaluator.doc file that it included in the MMM installation.

Within METAMODEL MANAGER, EVALUATOR and MMMACRO can be inserted into the

sequence of sub-model steps and used to transform any state variables, by evaluating

functions of other state variables and the metamodel values for RUN (which iteration is

currently running) and YEAR (the current metamodel cycle). In this way, you can

translate variables from the form used by one sub-model to a form needed by another, or

you can write what are essentially simple programs to derive or update state variables.

For example, you could use an EVALUATOR or an MMMACRO to generate a pattern of

habitat change over time, and then use this variable within sub-models to modify

survival, dispersal, or other rates. (If one of your sub-models is VORTEX, you could almost

always embed the work of EVALUATOR or MMMACRO to modify variables within the

VORTEX model, as it has the same ability as METAMODEL MANAGER to do such

transformations. However, the metamodel structure might be clearer if processing of

transformations that involve data from other, and possible several, sub-models is kept

within the METAMODEL MANAGER project rather than carried out within one of the VORTEX

sub-models.)

When you add an EVALUATOR to your metamodel on the Order Model Steps screen (using

the +Evaluator button), an EVALUATOR Step Setup window will open up. (See Figure 15.)

In this window, you first specify which GSV, PSV, or ISV you want to modify with the

EVALUATOR. If you pick a PSV or ISV, you need also to specify for which population (or

METAMODEL MANAGER Version 1.0 User’s Manual

55

all populations) you want to calculate updated values. If you select an ISV, the

EVALUATOR will apply the transformation to all individuals in the population (although it

is possible to specify within the function that the transformation applies to only some

individuals, based on their ID, sex, age, or any ISVs).

The list at the bottom of the window shows what variables are available for use in the

function. For transformations of a GSV, only RUN, YEAR, and GSVs can be used in the

function (because it would be ambiguous which population was being referenced if a

PSV was used). For functions to transform a PSV, you can use RUN, YEAR, GSVs, and

PSVs. For EVALUATORs that transform an ISV, any GSV, PSV, or ISV can be used.

Figure 16. Evaluator Step Setup window.

METAMODEL MANAGER Version 1.0 User’s Manual

56

Operators and built-in functions available

EVALUATOR includes an extensive list of operators and mathematical functions for use in

defining the transformations of state variables. Most of these operators are listed below,

and more information about them is included as an Appendix to the VORTEX manual.

Operators, listed in order of precedence (evaluated first at the top), with left-to-right

evaluation for sets of operators on the same line. Parentheses (any of ‘(‘, ‘[‘, or ‘{‘, and

the matching ‘)’, ‘]’, or ‘}’) can be used to force the order of evaluation of operators.

^ (exponentiation, e.g., 5^3 = 125

- (negation, e.g., 5+(-3) = 2

! (logical NOT)

*, /, % (multiplication, divide, and modulus [remainder from integer division])

+, -

<, >, <=, >=

=, != (“==” will be made equivalent to “=” and to EQUALS, and “#” is equivalent to

“!=”)

AND, OR, NAND, NOR (“&” and “&&” and “AND” are all equivalent; “|” and “||”

and “OR” are all equivalent; “NAND” can be coded as “$” and “NOR” can be coded as

“~”.)

IF(A;B;C) B if A is true; C if A is false

Other functions available for use (with the standard meanings, if not explained) are:

Mathematical functions

MAX(A;B)
MIN(A;B)
POW(A;B) [=A^B]
EXP(A) [=E^A]
SQRT(A) [=SQR(A)]
MOD(A;B) [=A%B], the remainder after integer division. E.g., 8%3=2

ABS(A), absolute value

LN(A) [=LOGE(A)=LOG(A)]
LOG10(A)
CEIL(A), smallest integer value equal to or greater than A

FLOOR(A), largest integer equal to or less than A

ROUND(A), nearest integer value, rounds down for even numbers + 0.5, rounds up for

odd numbers + 0.5.

PROUND(A), probabilistic rounding, rounds up with probability equal to the non-integer

part of the number. E.g., PROUND(5.75) = 6 in 75% of the cases; and 5 in 25% of the

time.

METAMODEL MANAGER Version 1.0 User’s Manual

57

Random number generators

RAND, a random number between 0.0 to 1.0.

SRAND(S), a seeded RAND, such that for a given integer seed, S, the random value is

always the same

NRAND, returns a random (0,1) normal

SNRAND(S), a seeded NRAND

UNIFORM(A;B), returns a random number drawn from the interval A to B.

SUNIFORM(A;B;S), a seeded UNIFORM

IUNIFORM(A;B), returns a random integer drawn from the interval A to B.

SIUNIFORM(A;B;S), a seeded IUNIFORM

POISSON(A), returns a random number from a Poisson distribution with mean A.

SPOISSON(A;S), a seeded POISSON

BINOMIALN(A;B), returns the number of successes sampled from a binomial

distribution with parameters mean = A and sample size n = B.

BINOMIALP(A;B), returns the proportion of successes sampled from a binomial

distribution with parameters mean = A and sample size n = B.

SBINOMIALN(A;B;S), a seeded BINOMIALN

SBINOMIALN(A;B;S), a seeded BINOMIALP

BETA(A;B), returns a random number sampled from a beta distribution with shape

parameters A and B.

SBETA(A;B;S), a seeded BETA

BETAM(A;B), returns a random number sampled from a beta distribution with

parameters mean = A and SD = B.

SBETAM(A;B;S), a seeded BETAM

GAMMA(A;B), returns a random number sampled from a gamma distribution with shape

parameters A and B.

SGAMMA(A;B;S), a seeded GAMMA

GAMMAM(A;B), returns a random number sampled from a gamma distribution with

parameters mean = A and SD = B.

SGAMMAM(A;B;S), a seeded GAMMAM

DECAY(A), returns an integer sampled from the distribution representing exponential decay at

a constant rate; returns the number of timesteps until transition in a process with probability A

each timestep. If A <= 0, then the function returns 0 (not infinity).

SDECAY(A;S), a seeded DECAY.

Trigometric functions

SIN(A), sine of A, with A in radians (as is the case for all trigometric functions)

COS(A), cosine

TAN(A), tangent

ASIN(A), arcsine, in radians

ACOS(A), arccosine

ATAN(A), arctangent

SINH(A), hyperbolic sine

COSH(A), hyperbolic cosine

METAMODEL MANAGER Version 1.0 User’s Manual

58

TANH(A), hyperbolic tangent

DEGREES(A), convert radians to degrees

RADIANS(A), convert degrees to radians

Operations on lists

LOW(A;B;C;…), lowest value in the list

HIGH(A;B;C;…), largest value in the list

MEDIAN(A;B;C;..), median of a list

MEAN(A;B;C;…), mean value of a list

SUM(A;B;C;…), sum of a list, i.e., A+B+C+…

PRODUCT(A;B;C;…), product of a list, i.e., A*B*C*…

LOOKUP(X;A;B;C;D;…), value in the X position of the subsequent list, A;B;C;D;…

 e.g., LOOKUP(3;B;C;D;E;F) = D

CHOOSE(A;B;C;…), a randomly chosen value from the list

SCHOOSE(S;A;B;C;D;…), a seeded randomly chosen value from the list, with seed S

FIND(X;A;B;C;D;…), the location (1-based index) of value X in the list A;B;C; … .

Returns 0 if not found.

COUNT(A;B;C;…), the number of values in a list

RETURNLIST (N;A;B;C;D;…), places the list values (A;B;C; …) into the PPS(N) array

(replacing all prior values) and returns the number of values in the list
PERCENTILE(P;A;B;C;D;…), the value in list A;B;C;D; … that is at the P percentile;

i.e., P percent of the values fall at or below the result.

E.g., PERCENTILE(60;1;2;3;4;5) = 3; PERCENTILE(65;1;2;3;4;5) = 4

PRANK(X;A;B;C;D;…), the percentile (rank) of value X in the list A;B;C;D; interpolated

for values of X not in the list.

 E.g., PRANK(3;1;2;3;4;5) = 50; PRANK(3.2;1;2;3;4;5) = 54
TIMESERIES(A;B;C;…), the list item that is at location given by the current value of Y

(year), returns the last value if year > number of elements in the list.

Note that the value of a TIMESERIES can be obtained through a special use of

the doEval method (see above), such that doEval(x) returns the x item in the

sequence.

Operations to create or modify lists

Note that these functions can’t stand alone in an EVALUATOR, because they do not

return a single value. Instead, they must be used within a function that operates on

a list – see above. For example, an EVALUATOR of “=SORT(1;3;5)” is not valid,

but “=FIND(3;SORT(1;3;5;4;2))” is valid and returns the answer 3.

FILE(filename), creates a list from the values in a text file

LIST(A), creates a list from the values from the PPS(A) values
SEQUENCE(A;B;C), creates a list with values from A to B (inclusive), by increments

of C

SORT(A;B;C;…), sorts the list from low to high
SORTREV(A;B;C;…), sorts the list from high to low
REVERSE(A;B;C;…), reverses the order of the list

METAMODEL MANAGER Version 1.0 User’s Manual

59

SUBSET(A;B;C;D;E;…), creates a list from C; D; E; …, starting with the A position and

ending at the B position

SAMPLE(N;A;B;C;…), creates a new list of N items randomly chosen from A; B; C; …

SSAMPLE(S;N;A;B;C;…), creates a new list of N items randomly chosen with seed S

APPEND(X;A;B;C;…), appends X to the end of the list

PREPEND(X;A;B;C;…), inserts X at the beginning of the list

INSERT(X;N;A;B;C;…), inserts the value X at the (1-based) position N

REMOVE(X;A;B;C;…), removes first item equal to X from the list

REMOVEALL(X;A;B;C;…), removes all items equal to X from the list

REMOVEAT(N;A;B;C;…), removes the item at the (1-based) position N from the list

A few notes about format:

Variable names and operation names are case-insensitive. (They are always converted to

upper case within EVALUATOR.)

TRUE = 1 and FALSE = 0 in the code, and the numeric values can be used

interchangeably with TRUE and FALSE.

‘F’ [in single quotes to signify a character, not the variable F] can be used for FEMALE

and is coded as (and can be replaced by) 0.

‘M’ [in single quotes to signify a character, not the variable M] can be used for MALE

and is coded as (and can be replaced by) 1.

‘E’ [in single quotes to signify a character, not the variable E] will be translated into the

base of the natural logarithms.

PI is translated into 3.1415…

Numeric format: The program will assume that floating point numbers are formatted

according to the Region settings on the computer. E.g., in the USA, 31/10 = 3.1;

whereas in most of Europe, 31/10 = 3,1.

The comma (‘,’) should not be used as a delimiter to separate parameters, because of its

meaning as a decimal delimiter in most regions. Instead the semi-colon is used to

separate parameters being passed to functions. Thus, the correct format is, e.g.,

MAX(A;B), not MAX(A,B)
POW(C;10), not POW(C,10)

Parentheses enclosing sets of parameters or defining order of operations can be

interchangeably designated by ‘(‘, ‘[‘, or ‘{‘, and ‘)’, ‘]’, or ‘}’. Although the choice of

brackets or braces makes no difference to the program, it can be useful to alternate among

them to help with the readability of functions. For example, the following are equivalent,

but the second one might be easier to read.

SRAND((A+B)*C)+5^(SQRT((D+E)*LOG(ABS(F)))+G)
SRAND[(A+B)*C]+5^{SQRT[(D+E)*LOG(ABS[F])]+G}

METAMODEL MANAGER Version 1.0 User’s Manual

60

Using MMMACROs in METAMODEL MANAGER

MMMACRO is an extension of EVALUATOR, allowing evaluation of short programs

(“methods”, “scripts”, or macros) that consist of assignments of variables using

EVALUATOR functions, within simple (Basic language-like) program flow.

To add an MMMACRO as a sub-model to your metamodel, on the Set System Level and

Modifier Programs screen, you click on “Add Modifier Model” and then chose

MMMACRO from the dropdown list of available models. You then specify the Project File

that contains your MMMACRO.

The MMMACRO file can contain a macro that modifies GSVs, one that modifies PSVs,

and one that modifies ISVs, or any subset of the three types. The macro for modifying

GSVs will be run once when the MMMACRO step is processed in the metamodel, the

macro for modifying PSVs will be evaluated for each population, and the individual

macro will be evaluated for each individual. Each of the three macros must specify which

state variables will be “shared” with the metamodel, optionally what values to assign to

the shared variables when the MMMACRO is invoked, and a series of steps that can

include assignment functions and program flow statements.

An example of a simple MMMACRO file is given below. In it, the GSV labeled AREA is

decreased by 5 every fifth year; the PSV K is set to 1.5 * AREA, and MORT is reduced

by 1 every year; and the ISV REPRO is an exponentially declining function of INBR.

SharedGlobalVars=AREA
Vals=100
* Any line starting with a ‘*’ is a comment and is ignored by MMMACRO
Comments can also be started with ‘#’
RATE=-5
AREA=AREA+(YEAR%5=0)*RATE
RETURN
SharedPopVars=K;MORT
Vals=150
K=AREA*1.5
RATE=-1
MORT=MORT+RATE*YEAR
RETURN
SharedIndVars=INBR;REPRO
Vals=0;75
REPROINIT=75
B=3.14
REPRO=REPROINIT*EXP(-B*INBR)
RETURN

The “Vals=” lines in a MMMACRO are optional, and they specify what values should be

assigned to the shared state variables at the start of each iteration (with the order of the

values corresponding to the order of the shared variable names). If the “Vals=” is omitted

METAMODEL MANAGER Version 1.0 User’s Manual

61

for a shared variable, MMMACRO the first instance of the macro (like all others during the

simulation) will start with whatever value the state variable had from assignment in the

other sub-models. Note that at least one sub-model or MMMACRO must assign the initial

value to each state variable. (Actually, if no component of the metamodel assigns an

initial value to a state variable, it will start at -999.) If MMMACRO does assign an initial

value to a variable, that will over-write whatever initial values were assigned by the

System level model or Modifier models that run prior to the MMMACRO in the metamodel

steps. The RETURN statements at the end of each macro are optional, but it is a good

practice to use them.

It is important to understand the distinction between Shared variables (those that can be

modified from the outside, and can be read by outside programs) and Local (or private)

variables (those that are used only within that macro). Note that private variables, even

with the same name, do not carry across from Global, to Population, and to Individual

macros.

Global shared variables automatically are carried down to population and individual

macros within the same MMMACRO. Similarly, Population shared variables automatically

available to an individual macro that follows the population macro.

The following example is a more complex macro that illustrates some of the program

flow statements available in MMMACROs.

SharedGlobalVars=GS1;Joe
Vals=5;7
A=10+RAND
PS1=6
* Note that PS1 is not a shared variable in this macro,
* so PS1 is treated as internal to the macro and
* unrelated to a PS1 that might exist in the metamodel
B=A*2
C=2
if (RAND<0.5)
C=3
endif
X=1
do
X=X+2
PS1=PS1+X
while (X<5)
GS1=A
Return

Note that an MMMACRO can use variables (such as A, B, C, X, and PS1 in the above

example) that are internal to the macro and not “shared”, and therefore will not be saved

and returned to MMM. In addition, it is not required that shared variables be initialized

METAMODEL MANAGER Version 1.0 User’s Manual

62

with an initial Values list, if they are initialized within the MMMACRO itself, or by

another sub-model.

MMMACRO program flow statements available

The following means of controlling program flow through the MMMACRO are available

(with examples given for each):

IF/ELSE/END – a block of commands that execute if the condition is true. The optional

use of an ELSE allows specification of an alternative block of commands that execute if

the condition is false.

 A=1
 IF(A%2=1)
 B=A*2
 ELSE
 B=A*3
 END

RETURN

Note that IF is also used as an in-line EVALUATOR function for assignment of values to

variables. The use of IF as a MMMACRO control command vs an operation within an

equation is determined by the context. For example, the following MMMACRO has the

same result as the previous one.

 A=1
 B=IF(A%2=1;A*2;A*3)

RETURN

RETURN (synonymous with QUIT and EXIT) – closes a MMMACRO, and can be used to

terminate execution of further steps. Optional at the end of the MMMACRO.

 A=10
 IF(A%2=1)
 RETURN
 END
 B=A*3

RETURN

DO/WHILE – a loop that iterates until the closing WHILE condition is false.

 A=1
DO

 A=A+2
 WHILE (A<10)

RETURN

METAMODEL MANAGER Version 1.0 User’s Manual

63

DOWHILE/END – a loop that iterates as long as the condition specified in the opening

DOWHILE is true.

 A=1
 DOWHILE(A<10)
 A=A+2
 END

RETURN

CONTINUE (synonymous with LOOP) – returns to the top of the DO/WHILE or

DOWHILE loop

 A=1
 B=2
 DOWHILE(A<10)
 A=A+2
 IF(A<B)

CONTINUE
 END
 A=SIN(C)
 END

RETURN

Note that each END statement applies to the most nearest IF or DOWHILE statement

above it that was not already matched by a previous END statement. ENDIF and

ENDWHILE can be used to make it clearer to which block an END refers (but the

ENDIF and ENDWHILE do not override the syntax rule that every END always applies

to the previous non-ENDed block).

BREAK – goes to the statement following the innermost current DO/WHILE or

DOWHILE loop

GOTO – goes to the line number specified

 A=RAND
 IF(A>0.5)
 GOTO 6

END
 A=RAND

B=A*5
RETURN

Note that line numbers are not entered, but the GOTO command sends control to the step

that occurs at the specified line of the macro.

METAMODEL MANAGER Version 1.0 User’s Manual

64

LIST(n)=… -- Assigns the list defined (with functions such as SEQUENCE or FILE) on

the right-hand side to a list labeled LIST(1), or LIST(2), etc. This list can then be used

within functions in further steps of the macro.

MAKELIST(A;B;C; …) – Makes a list from values A;B;C; … This is provided to

facilitate the use of LIST(n) = MAKELIST(A;B;C;…). [Simply LIST(n) = (A;B;C;…) will

not work because the right-hand side of the equation is not a well-formed expression.]

MAKELIST has no usefulness in other contexts, because the simple list (A;B;C;…) can be

used as the parameters passed to other functions that call for a list.

Testing MMMACRO:

MMMacroEntry.exe is a little interface program that allows you to build and test an

MMMACRO. MMMACROENTRY can read an MMMACRO file or facilitate building and

editing a file in a simple text grid.

New MMMACRO, VMacro, and EVALUATOR commands for using R scripts

Functions (“EVALUATOR”s) and Macros (VMACRO or MMMACRO) in VORTEX and MMM

can call R scripts to process data and provide results that can be used in input or as output

descriptors.

When any R script or command is run within a function of macro in VORTEX and MMM,

an instance of the R engine will be started if one wasn’t already started by the program.

The same R engine remains in use (i.e., it is not closed and then reopened) until the

program (VORTEX, EVALUATOR, MMM, etc.) closes. This means that a script can be run to

do some calculations, and then the working environment and all of its data remain

accessible to further R scripts.

Methods available in EVALUATOR functions and MMMACROs for running R scripts:

RMACRO(rscriptfile) -- runs the R script in the file. Note that normally this is where you

would put a command to load an R library to be used for later commands. In here, you

can also put other start-up commands that might be needed. Rscriptfile must be passed as

a string in quotes, e.g., RMACRO(“C:/WorkingFolder/myRfile.txt”). The user would

normally need to run such a script when a scenario starts running, in order to load the

necessary R libraries.

REVAL(command) – evaluates the R command and returns a double (if the R command

returns anything). The R command must be a quoted string, e.g., REVAL(“newdata<-

data.frame(A=3,B=4,C=5)”), in order to avoid confusion between characters in the R

command and delimiters and operators in the function.

REVALGS(command) – creates a data.frame called RDATA with all the current GSVs

and the variables A to Z, and then evaluates the R command. The data.frame labels the

variables by their labels, not by GS1, GS2, etc. (unless those are also used as the labels).

METAMODEL MANAGER Version 1.0 User’s Manual

65

Labels will be given in upper case when assigned to RDATA, so reference to them in the

R command must also use upper case. Returns whatever the R command returns.

REVALPS(command) – creates a data.frame (RDATA) with the current GSVs, PSVs,

and the variables A to Z, and then evaluates the R command.

REVALIS(command) – creates a data.frame (RDATA) with the current GSvars, PSvars,

ISVs, and the variables A to Z, and then evaluates the R command.

REVALVARS(command) – creates a data.frame (RDATA) with the current variables A

to Z (plus any further VAR1, VAR2, etc.) and then evaluates the R command.

REVALVALS(command; x1; x2; x3; …) – creates a data.frame (RDATA) with the

values x1, x2, x3, etc. and then evaluates the R command. The data.frame labels for these

variables will be VAR1, VAR2, VAR3, etc.

When writing the R commands above, the user will need to be cognizant that the

data.frame created by the above commands is always called RDATA, although other

data.frames can be created with REVAL or RMACRO. For example, after evaluating an

REVALGS (which will create a data.frame with the GSvars), the statement

REVAL(“GSDATA<-RDATA”) could be used to save those data for later use together

with PSVs in an REVALPS.

A few more things to be aware of …

R commands are case sensitive, whereas EVALUATOR commands are not. E.g.,

reval(“GSDATA<-RDATA”) is the same as REVAL(“GSDATA<-RDATA”), but these

are not the same as REVAL(“gsdata<-rdata”).

R commands are passed as quoted strings to REVAL, e.g., as REVAL(“GSDATA<-

RDATA”), not as REVAL(GSDATA<-RDATA), and this means that the R command

can contain symbols that would normally cause problems for EVALUATOR (e.g., might be

interpreted as operators or delimiters) if they were outside of a quoted string. (E.g., to

EVALUATOR, GSDATA<-RDATA, without quotes, would be a test of whether a variable

called GSDATA was less than the negative of a variable called RDATA.) When an R

command contains elements that are in quotes, you must use single quotes rather than

double quotes within the R command, so that the (single!) quotes within the R command

do not get confused with the (double!) quotes that encase the R command.

METAMODEL MANAGER Version 1.0 User’s Manual

66

Appendix VI. Template for open data
exchange via METAMODEL MANAGER

We hope that in addition to the demographic, animal movement, and disease spread

program suite built by contributors to METAMODEL MANAGER, you will find opportunities

to build your own programs in conjunction with MMM. If you choose to do so, your

program must be developed in a way that is compatible with the MMM. You can use the

information and template described below to help set up the coding for your own

programs so that they are compatible with the METAMODEL MANAGER and can share

system, population, and individual data with other linked programs. We won’t pretend

that those who are new to programming will be able to write computer code for a model

that is then linked to other models via METAMODEL MANAGER. You need to be

experienced in a computer language such as C#, Visual Basic, Delphi, or Java to be able

to write the functions necessary to have programs developed in these languages access

data in MMM. (However, even if you have no expertise programming in such languages,

you can write simple macros or scripts – as you might in Excel or for a statistical package

– to carry out relatively simple data manipulations using the MMMACRO or EVALUATOR

utilities that are included with MMM. MMMACRO handles all the data exchange with

MMM for you, so you do not need to know how it or other programs interface with

MMM.) METAMODEL MANAGER is written in C#, and you will find the source code in the

SourceCode subfolder of the program folder where METAMODEL MANAGER is installed.

To add your own System or Modifier models to the toolbox available to METAMODEL

MANAGER, you will need to create a .NET compatible dynamically linked library (dll)

with functions that provide the interface through which to access the Global, Population,

and Individual data contained within class MData. The standard function calls that

METAMODEL MANAGER uses to communicate with any linked model are Initialize(),

Simulate(), optionally a Year0Sim(), and Close(), although these three functions can be

given different names if the synonymous names are specified to METAMODEL MANAGER

in the model specifications user interface. Initialize() carries out any work that is needed

to start a sub-model running. This often includes reading input values from a project file,

notifying MMM what state variables will be used by the model, some memory

management, initializing arrays for output data, and creating output files. For System

level models, Initialize() is also where the initial creation of the starting populations will

often occur. Simulate() contains the work that is done each time that MMM hands control

of the metamodel to the sub-model. This will normally require first accessing the current

values of state variables, populations, and individuals from MMM, performing a time

step of the sub-model simulation, and then passing updated values of state variables and

individuals back to MMM. Year0Sim() is optionally available as a method that is called

before the first cycle through the simulation. This could include any further initialization

of the sub-model that might require that all sub-models have previously been initialized

and have added their state variables to the metamodel. For example, a System sub-model

might require that Modifier models have defined their state variables before the System

METAMODEL MANAGER Version 1.0 User’s Manual

67

model creates the initial populations of individuals. The Close() method completes any

work that is necessary when the simulation has finished. This might include final

calculations of summary output, closing of output files, and freeing memory. It can also

be an empty method if all work to finish calculations, close files, and free memory is

done after each time step (or done when the sub-model runs the Simulate() method for

the last time step of the simulation). The parameters that are passed to Initialize(),

Year0Sim(), and Simulate() are determined by MMM at run time from the function

definitions in the dll. See the code files for examples.

The structure of the metamodel data in MData is defined in the small library MMMCore,

and usually the sub-model to be linked to MMM will need to use the MMMCore.dll

library. The C# code for the MMMCore.dll is provided in the METAMODEL MANAGER

installation file.

Another small code file – MMLinkTemplate.cs – is included to provide a template for the

three key functions for passing data between METAMODEL MANAGER and a user-provided

model. In addition, the code for the MMMACRO modifier program which provides a

means to modify variables in MData via macros or scripts is provided to show a more

complete and complex example.

Your program will appear on the program list on your computer if you set it up to do so.

It will only be resident on your computer. This is done via the Manage Loaded Apps

option on the opening screen of MMM. When you Manage Loaded Apps, you have two

options to add a new program to the list of sub-models available to your metamodels.

You can load the sub-model’s program specifications from a small xml file. The

following is the xml file used by MMMacro:

<MAppSpecs>

 <Name>MMMacro</Name>

 <Description>Metamodel variable translation module</Description>

 <DLL>MMMacroLib.dll</DLL>

 <NameSpace>MMMacro.MMMacro</NameSpace>

 <Variables>

 </Variables>

 <Functions>

 <Standard>True</Standard>

 </Functions>

</MAppSpecs>

It is easier, however, to use the ‘Add’ button to add the specifications from the user

interface, in which case MMM will create the xml specification file for you. Figure 17 is

the window that opens to allow you to specify the library methods that will link your

model to MMM, with the specification for MMMacro shown. You can use the standard

names for Initialize(), Simulate(), Year0Sim(), and Close() in your program, or you can

specify different names for these functions in this screen.

METAMODEL MANAGER Version 1.0 User’s Manual

68

After you have added the specifications for your model to MMM, your model will show

up on the dropdown lists of System or Modifier models available to you when you create

a new metamodel. Other users who want to use your model in their metamodels will need

to repeat the above steps, or just get the specification xml that you created and load it into

their METAMODEL MANAGER by Manage Loaded Apps. On each computer, any xml

specification file created by MMM and the lists of your added apps (in files called apps.l

and sysapps.l) will be located in the user’s local AppData folder (usually

C:/Users/[user]/Local/AppData/Species Conservation Toolkit Initiative/MeMoMa). If the

lists of loaded apps gets corrupted (as can happen if you start to add another app, but

don’t complete the process), go into the AddData folder, edit or delete the sysapps.l and

apps.l files, and then if necessary add your models again to your MMM.

If you think your program may have broader utility to the conservation community, then

we encourage you to make your program available for others to use. (Provide them with

the dll, the xml specification file, documentation, and examples!) The metamodeling

tools website (https://scti.tools) will provide downloads for relevant software that

developers are willing to distribute freely, and will provide links to other sites for

programs that charge a fee or are otherwise restricted in their use.

Figure 17. Additional Model Specification.

https://scti.tools/

	ToC
	ToC
	SCTI
	Start
	ModelSelection
	DataSet
	StepOrder
	BreakSetup
	DataViewer
	InputStepSetup
	OutputStepSetup
	GraphOptions
	Simulate
	PopView
	Evaluator
	Models
	ModelSpec

